ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 200]      



Задача 65655

Темы:   [ Простые числа и их свойства ]
[ Разложение на множители ]
Сложность: 3
Классы: 7,8,9

Может ли разность четвёртых степеней простых чисел быть простым числом?

Прислать комментарий     Решение

Задача 67013

Темы:   [ Простые числа и их свойства ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 7,8,9,10

Найдите наибольшее натуральное $n$, обладающее следующим свойством: для любого простого нечетного $p$, меньшего $n$, разность $n - p$ также является простым числом.
Прислать комментарий     Решение


Задача 76493

Темы:   [ Простые числа и их свойства ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 7,8,9

Доказать, что квадрат любого простого числа  p > 3  при делении на 12 даёт в остатке 1.

Прислать комментарий     Решение


Задача 78663

Темы:   [ Простые числа и их свойства ]
[ Тождественные преобразования ]
[ Арифметика остатков (прочее) ]
[ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 8,9,10

Докажите, что если p и q – два простых числа, причём  q = p + 2,  то  pq + qp  делится на  p + q.

Прислать комментарий     Решение

Задача 86477

Темы:   [ Простые числа и их свойства ]
[ Разложение на множители ]
[ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 7,8,9

Пусть p – простое число, отличное от 2 и 5. Доказать, что  p4 − 1  делится на 10.

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 200]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .