ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 200]      



Задача 32885

Темы:   [ Простые числа и их свойства ]
[ Десятичная система счисления ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8,9

Ваня записал несколько простых чисел, использовав ровно по одному разу все цифры от 1 до 9. Сумма этих простых чисел оказалась равной 225.
Можно ли, использовав ровно по одному разу те же цифры, записать несколько простых чисел так, чтобы их сумма оказалась меньше?

Прислать комментарий     Решение

Задача 60466

Темы:   [ Простые числа и их свойства ]
[ Арифметическая прогрессия ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9

Существуют ли  а) 5,  б) 6 простых чисел, образующих арифметическую прогрессию?

Прислать комментарий     Решение

Задача 60471

Темы:   [ Простые числа и их свойства ]
[ Разложение на множители ]
[ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 7,8,9

Докажите, что при  n > 2  числа  2n – 1  и  2n + 1  не могут быть простыми одновременно.

Прислать комментарий     Решение

Задача 60476

Темы:   [ Простые числа и их свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8,9

Верно ли, что все числа вида  p1p2...pn + 1 являются простыми? (pkk-е простое число.)

Прислать комментарий     Решение

Задача 60477

 [Числа Евклида]
Темы:   [ Простые числа и их свойства ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 3
Классы: 7,8,9

Евклидово доказательство бесконечности множества простых чисел наводит на мысль определить рекуррентно числа Евклида:
e1 = 2,  en = e1e2...en–1 + 1  (n ≥ 2).  Все ли числа en являются простыми?

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 200]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .