ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Шейпак И.А.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 [Всего задач: 4]      



Задача 32885

Темы:   [ Простые числа и их свойства ]
[ Десятичная система счисления ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8,9

Ваня записал несколько простых чисел, использовав ровно по одному разу все цифры от 1 до 9. Сумма этих простых чисел оказалась равной 225.
Можно ли, использовав ровно по одному разу те же цифры, записать несколько простых чисел так, чтобы их сумма оказалась меньше?

Прислать комментарий     Решение

Задача 66091

Темы:   [ Уравнения высших степеней (прочее) ]
[ Алгебраические неравенства (прочее) ]
[ Классические неравенства (прочее) ]
[ Разложение на множители ]
[ Возрастание и убывание. Исследование функций ]
Сложность: 4
Классы: 9,10,11

Пусть a – положительный корень уравнения  x2017x – 1 = 0,  а b – положительный корень уравнения  y4034y = 3a.
  а) Сравните a и b.
  б) Найдите десятый знак после запятой числа  |a – b|.

Прислать комментарий     Решение

Задача 66492

Тема:   [ Теория чисел. Делимость (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Пусть $x$ и $y$ — пятизначные числа, в десятичной записи которых использованы все десять цифр ровно по одному разу. Найдите наибольшее возможное значение $x$, если $\operatorname{tg} x^\circ- \operatorname{tg} y^\circ=1+\operatorname{tg} x^\circ \operatorname{tg} y^\circ$ ($x^\circ$ обозначает угол в $x$ градусов).
Прислать комментарий     Решение


Задача 66617

Темы:   [ Теория алгоритмов (прочее) ]
[ Процессы и операции ]
[ Полуинварианты ]
Сложность: 6
Классы: 10,11

На доске написано несколько чисел. Разрешается стереть любые два числа $a$ и $b$, а затем вместо одного из них написать число $\frac{a+b}{4}$. Какое наименьшее число может остаться на доске после 2018 таких операций, если изначально на ней написано 2019 единиц?
Прислать комментарий     Решение


Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .