ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 200]      



Задача 60456

Темы:   [ Простые числа и их свойства ]
[ Произведения и факториалы ]
Сложность: 3+
Классы: 8,9

Пусть  n > 2.  Докажите, что между n и n! есть по крайней мере одно простое число.

Прислать комментарий     Решение

Задача 60459

Темы:   [ Простые числа и их свойства ]
[ Арифметика остатков (прочее) ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 7,8,9

Докажите, что множество простых чисел вида  p = 4k + 3  бесконечно.

Прислать комментарий     Решение

Задача 60460

Темы:   [ Простые числа и их свойства ]
[ Арифметика остатков (прочее) ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 7,8,9

Докажите, что множество простых чисел вида  p = 6k + 5  бесконечно.

Прислать комментарий     Решение

Задача 60474

Тема:   [ Простые числа и их свойства ]
Сложность: 3+
Классы: 8,9,10

Пусть  {pn} – последовательность простых чисел  (p1 = 2,  p2 = 3,  p3 = 5, ...).
  а) Докажите, что  pn > 2n  при  n ≥ 5.
  б) При каких n будет выполняться неравенство  pn > 3n?

Прислать комментарий     Решение

Задача 60475

Тема:   [ Простые числа и их свойства ]
Сложность: 3+
Классы: 8,9,10

Докажите неравенство  pn+1 < p1p2...pn  (pkk-е простое число).

Прислать комментарий     Решение

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 200]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .