|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи На столе лежат две кучки камней: в первой кучке 10 камней, а во второй - 15. За ход разрешается разделить любую кучку на две меньшие. Проигрывает тот, кто не сможет делать ход. Может ли выиграть второй игрок? Докажите, что наибольшее расстояние между точками двух окружностей, лежащих одна вне другой, равно сумме радиусов этих окружностей и расстояния между их центрами.
В кубе с ребром длины 1 провели два сечения в виде правильных шестиугольников. Ковбой Билл зашёл в бар и попросил у бармена бутылку виски за 3 доллара и шесть коробков непромокаемых спичек, цену которых он не знал. Бармен потребовал с него 11 долларов 80 центов (1 доллар = 100 центов), и в ответ на это Билл вытащил револьвер. Тогда бармен пересчитал стоимость покупки и исправил ошибку. Как Билл догадался, что бармен пытался его обсчитать? Вписанная сфера треугольной пирамиды $SABC$ касается основания $ABC$ в точке $P$, а боковых граней в точках $K$, $M$ и $N$. Прямые $PK$, $PM$, $PN$ пересекают плоскость, проходящую через середины боковых рёбер пирамиды, в точках $K'$, $M'$, $N'$. Докажите, что прямая $SP$ проходит через центр описанной окружности треугольника $K'M'N'$. |
Страница: 1 2 >> [Всего задач: 6]
Дана тригармоническая четвёрка точек A, B, C и D (то есть AB·CD = AC·BD = AD·BC). Пусть A1 – такая отличная от A точка, что четвёрка точек A1, B, C и D тригармоническая. Точки B1, C1 и D1 определяются аналогично. Докажите, что
Страница: 1 2 >> [Всего задач: 6] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|