|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Отметьте на доске 8×8 несколько клеток так, чтобы любая (в том числе и любая отмеченная) клетка граничила по стороне ровно с одной отмеченной клеткой.
Деревянный брусок тремя распилами распилили на восемь меньших брусков. На рисунке у семи брусков указана их площадь поверхности. Многочлен степени $n > 1$ имеет $n$ разных корней $х_1$, $х_2$, ..., $х_n$. Его производная имеет корни $y_1$, $y_2$, ..., $y_{n-1}$. Докажите неравенство $$\frac{x_1^2 + \dots + x_n^2}{n} > \frac{y_1^2 + \dots + y_{n-1}^2}{n-1}.$$ |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 66]
Докажите, что для любого многочлена P(x) степени m существует единственный многочлен Q(x) степени m + 1 , для которого ΔQ(x) = P(x) и Q(0) = 0.
Многочлен степени $n > 1$ имеет $n$ разных корней $х_1$, $х_2$, ..., $х_n$. Его производная имеет корни $y_1$, $y_2$, ..., $y_{n-1}$. Докажите неравенство $$\frac{x_1^2 + \dots + x_n^2}{n} > \frac{y_1^2 + \dots + y_{n-1}^2}{n-1}.$$
Существует ли такой многочлен f(x) степени 6, что для любого x выполнено равенство f(sinx) + f(cosx) = 1?
Исходно на доске написаны многочлены x³ – 3x² + 5 и x² – 4x. Если на доске уже написаны многочлены f(x) и g(x), разрешается дописать на неё многочлены f(x) ± g(x), f(x)g(x), f(g(x)) и cf(x), где c – произвольная (не обязательно целая) константа. Может ли на доске после нескольких операций появиться многочлен вида xn – 1 (при натуральном n)?
Пусть f(x) – некоторый многочлен ненулевой степени.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 66] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|