Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 66]
|
|
|
Сложность: 5- Классы: 10,11
|
Изначально на доске были написаны одночленs 1, x, x², ..., xn. Договорившись заранее, k мальчиков каждую минуту одновременно вычисляли каждый сумму каких-то двух многочленов, написанных на доске, и результат дописывали на доску. Через m минут на доске были написаны, среди прочих, многочлены S1 = 1 + x, S2 = 1 + x + x², S3 = 1 + x + x² + x3, ..., Sn = 1 + x + x² + ... + xn. Докажите, что
|
|
|
Сложность: 5 Классы: 9,10,11
|
Докажите, что для любого натурального числа $n\geqslant 2$ и для любых действительных чисел $a_1, a_2, \ldots, a_n$,
удовлетворяющих условию $a_1+a_2+\ldots+a_n\ne 0$, уравнение
\begin{align*}
&a_1(x-a_2)(x-a_3)\ldots(x-a_n)+\\+&a_2(x-a_1)(x-a_3)\ldots(x-a_n)+\ldots\\
\ldots+&a_n(x-a_1)(x-a_2)\ldots(x-a_{n-1})=0
\end{align*}
имеет хотя бы один действительный корень.
|
|
|
Сложность: 2+ Классы: 7,8,9,10,11
|
Найдите коэффициент при x у многочлена (x – a)(x – b)(x – c)...(x – z).
|
|
|
Сложность: 3 Классы: 8,9,10
|
Выведите из теоремы 61013 то, что
– иррациональное число.
|
|
|
Сложность: 3 Классы: 9,10,11
|
Докажите, что если Q(x) – многочлен степени m + 1, то P(x) = ΔQ(x) – многочлен степени m.
Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 66]