|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Докажите, что прямая, проходящая через центры вневписанных окружностей треугольника ABC, касающихся сторон AB и AC, перпендикулярна прямой, проходящей через центр вписанной окружности и вершину A. Диагонали параллелограмма ABCD пересекаются в точке O. Периметр параллелограмма равен 12, а разность периметров треугольников BOC и COD равна 2. Найдите стороны параллелограмма.
У Пети в кармане несколько монет. Если Петя наугад вытащит из кармана 3 монеты, среди них обязательно найдётся монета "1 рубль". Если Петя наугад вытащит 4 монеты из кармана, среди них обязательно найдётся монета "2 рубля". Петя вытащил из кармана 5 монет. Назовите эти монеты. Семизначный код, состоящий из семи различных цифр, назовем хорошим. Паролем сейфа является хороший код. Известно, что сейф откроется, если введён хороший код и на каком-нибудь месте цифра кода совпала с соответствующей цифрой пароля. Можно ли гарантированно открыть сейф быстрее, чем за семь попыток? Точки M, A и B расположены на одной прямой, причём отрезок AM вдвое больше отрезка BM. Найдите AM, если AB = 6. На доске в лаборатории написаны два числа. Каждый день старший научный сотрудник Петя стирает с доски оба числа и пишет вместо них их среднее арифметическое и среднее гармоническое. Утром первого дня на доске были написаны числа 1 и 2. Найдите произведение чисел, записанных на доске вечером 1999-го дня. Известно, что A – наибольшее из чисел, являющихся произведением нескольких натуральных чисел, сумма которых равна 2011. Дан четырёхугольник ABCD. A', B', C' и D' – середины сторон BC, CD, DA и AB соответственно. Известно, что AA' = CC' и BB' = DD'. Две параболы с различными вершинами являются графиками квадратных трёхчленов со старшими коэффициентами p и q. Известно, что вершина каждой из парабол лежит на другой параболе. Чему может быть равно p + q? Правильный треугольник со стороной 1 разрезан произвольным образом на равносторонние треугольники, в каждый из которых вписан круг. Найдите объём тетраэдра ABCD с рёбрами AB=5 , AC=1 и CD = 7 , если расстояние между серединами M и N его рёбер AC и BD равно 3, а прямая AC образует равные углы с прямыми AB , CD и MN . Противоположные стороны выпуклого шестиугольника попарно равны и параллельны. Докажите, что он имеет центр симметрии. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 1567]
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 1567] |
||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|