ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 1518]      



Задача 57978

Тема:   [ Гомотетия и поворотная гомотетия ]
Сложность: 2-
Классы: 9

На плоскости даны точки A и B и прямая l. По какой траектории движется точка пересечения медиан треугольников ABC, если точка C движется по прямой l?
Прислать комментарий     Решение


Задача 87952

Темы:   [ Центральная симметрия помогает решить задачу ]
[ Разрезания (прочее) ]
Сложность: 2-
Классы: 5,6,7

На прямоугольном торте лежит круглая шоколадка. Как разрезать торт на две равные части так, чтобы и шоколадка тоже разделилась ровно пополам?
Прислать комментарий     Решение


Задача 57944

Тема:   [ Поворот (прочее) ]
Сложность: 2
Классы: 9

Докажите, что при повороте на угол $ \alpha$ с центром в начале координат точка с координатами (x, y) переходит в точку

(x cos$\displaystyle \alpha$ - y sin$\displaystyle \alpha$x sin$\displaystyle \alpha$ + y cos$\displaystyle \alpha$).


Прислать комментарий     Решение

Задача 86509

Темы:   [ Подобные фигуры ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 2
Классы: 8,9

Являются ли подобными два прямоугольника: картина в рамке и картина без рамки, если ширина рамки всюду одинакова (см. рис.)?

Прислать комментарий     Решение

Задача 35530

Темы:   [ Свойства симметрий и осей симметрии ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 2+
Классы: 8,9

Может ли бильярдный шар, отразившись поочередно от двух соседних сторон прямоугольного бильярдного стола, прийти в исходную точку?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 1518]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .