ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Автор: Бибиков П.

В остроугольном треугольнике $ABC$ проведены высоты $AH_A$, $BH_B$, $CH_C$. Пусть $X$ – произвольная точка отрезка $CH_C$, а $P$ – точка пересечения окружностей с диаметрами $H_CX$ и $BC$, отличная от $H_C$. Прямые $CP$ и $AH_A$ пересекаются в точке $Q$, а прямые $XP$ и $AB$ – в точке $R$. Докажите, что точки $A$, $P$, $Q$, $R$, $H_B$ лежат на одной окружности.

Вниз   Решение


В треугольнике ABC угол A наименьший. Через вершину A проведена прямая, пересекающая отрезок BC. Она пересекает описанную окружность в точке X, а серединные перпендикуляры к сторонам AC и AB — в точках B1 и C1. Прямые BC1 и CB1 пересекаются в точке Y. Докажите, что BY + CY = AX.

ВверхВниз   Решение


С помощью одной двусторонней линейки:
а) через данную точку проведите прямую, параллельную данной прямой;
б) постройте середину данного отрезка.

ВверхВниз   Решение


Диагонали четырёхугольника ABCD пересекаются в точке O.
Докажите, что произведение площадей треугольников AOB и COD равно произведению площадей треугольников BOC и DOA.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 408]      



Задача 35011

Тема:   [ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 2+
Классы: 9

Диагонали четырёхугольника ABCD пересекаются в точке O.
Докажите, что произведение площадей треугольников AOB и COD равно произведению площадей треугольников BOC и DOA.

Прислать комментарий     Решение

Задача 54306

Тема:   [ Площадь треугольника (через высоту и основание) ]
Сложность: 2+
Классы: 8,9

Основание треугольника на 4 меньше высоты, а площадь треугольника равна 96. Найдите основание и высоту треугольника.

Прислать комментарий     Решение

Задача 116434

Темы:   [ Площадь треугольника (через высоту и основание) ]
[ Площадь параллелограмма ]
Сложность: 2+
Классы: 9,10,11

Автор: Фольклор

Внутри параллелограмма ABCD выбрана произвольная точка Р и проведены отрезки РА, РВ, РС и PD. Площади трёх из образовавшихся треугольников равны 1, 2 и 3 (в каком-то порядке). Какие значения может принимать площадь четвёртого треугольника?

Прислать комментарий     Решение

Задача 35010

Темы:   [ Площадь треугольника (через высоту и основание) ]
[ Неравенство треугольника ]
Сложность: 3-
Классы: 9

Существует ли треугольник с высотами, равными 1, 2 и 3?

Прислать комментарий     Решение

Задача 55216

Темы:   [ Площадь треугольника (через две стороны и угол между ними) ]
[ Неравенства с площадями ]
Сложность: 3
Классы: 8,9

Среди всех треугольников с заданными сторонами AB и AC найдите тот, у которого наибольшая площадь.

Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 408]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .