ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Имеются два сосуда. В них разлили 1 л воды. Из первого сосуда переливают половину воды во второй, затем из второго переливают половину оказавшейся в нем воды в первый, затем из первого сосуда переливают половину оказавшейся в нем воды во второй и т. д. Докажите, что независимо от того, сколько воды было сначала в каждом из сосудов, после 100 переливаний в них будет $ {\frac{2}{3}}$ л и $ {\frac{1}{3}}$ л с точностью до 1 миллилитра.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 408]      



Задача 86980

Тема:   [ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
Сложность: 3
Классы: 8,9

В треугольной пирамиде SABC высота SO проходит через точку O – центр круга, вписанного в основание ABC пирамиды. Известно, что SAC = 60o , SCA = 45o , а отношение площади треугольника AOB к площади треугольника ABC равно . Найдите угол BSC .
Прислать комментарий     Решение


Задача 108026

Темы:   [ Площадь треугольника (через две стороны и угол между ними) ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Тождественные преобразования (тригонометрия) ]
[ Площадь четырехугольника ]
[ Связь величины угла с длиной дуги и хорды ]
Сложность: 3
Классы: 8,9

Из вершины A квадрата ABCD со стороной 1 проведены два луча, пересекающие квадрат так, что вершина C лежит между лучами. Угол между лучами равен β. Из вершин B и D проведены перпендикуляры к лучам. Найдите площадь четырёхугольника с вершинами в основаниях этих перпендикуляров.

Прислать комментарий     Решение

Задача 111354

Темы:   [ Площадь треугольника (через две стороны и угол между ними) ]
[ Экстремальные свойства. Задачи на максимум и минимум. ]
[ Треугольник (построения) ]
Сложность: 3
Классы: 10,11

Дана прямая и две точки A и B, лежащие по одну сторону от этой прямой на равном расстоянии от неё.
Как с помощью циркуля и линейки найти на прямой такую точку C, что произведение  AC·BC  будет наименьшим?

Прислать комментарий     Решение

Задача 55343

Темы:   [ Площадь треугольника (через две стороны и угол между ними) ]
[ Теорема синусов ]
Сложность: 3
Классы: 8,9

В треугольнике ABC известно, что $ \angle$BAC = $ \alpha$, $ \angle$BCA = $ \gamma$, AB = c. Найдите площадь треугольника ABC.

Прислать комментарий     Решение


Задача 55065

Темы:   [ Площадь треугольника (через две стороны и угол между ними) ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3
Классы: 8,9

Дан треугольник ABC, в котором угол B равен 30o, AB = 4, BC = 6. Биссектриса угла B пересекает сторону AC в точке D. Найдите площадь треугольника ABD.

Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 408]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .