ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 50]      



Задача 67010

Темы:   [ Сферы (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Касательные к сферам ]
Сложность: 4
Классы: 10,11

Можно ли расположить в пространстве пять сфер так, чтобы для каждой из сфер можно было провести через ее центр касательную плоскость к остальным четырем сферам? Сферы могут пересекаться и не обязаны иметь одинаковый радиус.
Прислать комментарий     Решение


Задача 67011

Темы:   [ Замощения костями домино и плитками ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4
Классы: 8,9,10,11

Автор: Брагин В.

Дано натуральное число $n > 1$. Что больше: количество способов разрезать клетчатый квадрат $3n \times 3n$ на клетчатые прямоугольники $1 \times 3$ или количество способов разрезать клетчатый квадрат $2n \times 2n$ на клетчатые прямоугольники $1 \times 2$?
Прислать комментарий     Решение


Задача 66327

Темы:   [ Геометрия на клетчатой бумаге ]
[ Центральный угол. Длина дуги и длина окружности ]
Сложность: 5
Классы: 7,8,9,10,11

Окружность радиуса 1 нарисована на шахматной доске так, что целиком содержит внутри белую клетку (сторона клетки равна 1). Докажите, что участки этой окружности, проходящие по белым клеткам, составляют суммарно не более 1/3 от её длины.
Прислать комментарий     Решение


Задача 66331

Темы:   [ Тетраэдр (прочее) ]
[ Соображения непрерывности ]
Сложность: 5
Классы: 8,9,10,11

а) Может ли шар некоторого радиуса высекать на гранях какого-нибудь правильного тетраэдра круги радиусов 1, 2, 3 и 4?

б) Тот же вопрос для шара радиуса 5.
Прислать комментарий     Решение


Задача 66332

Темы:   [ Теория алгоритмов (прочее) ]
[ Инварианты ]
[ Шахматная раскраска ]
Сложность: 5
Классы: 8,9,10,11

В левой нижней клетке доски 100×100 стоит фишка. Чередуя горизонтальные и вертикальные ходы в соседнюю по стороне клетку (первый ход – горизонтальный), она дошла сначала до левой верхней клетки, а потом до правой верхней. Докажите, что найдутся две такие клетки A и B, что фишка не менее двух раз делала ход из A в B.
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 50]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .