ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 50]      



Задача 66701

Тема:   [ Текстовые задачи (прочее) ]
Сложность: 4
Классы: 8,9,10,11

У Аладдина есть несколько одинаковых слитков золота, и иногда он просит джинна увеличить их количество. Джинн добавляет тысячу таких же слитков, но после этого берёт за услугу ровно половину от получившейся общей массы золота. Мог ли Аладдин оказаться в выигрыше после десяти таких просьб, если ни один слиток не пришлось распиливать?
Прислать комментарий     Решение


Задача 66702

Темы:   [ Дроби (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 8,9,10,11

Автор: Дидин М.

Существуют ли такие $2018$ положительных несократимых дробей с различными натуральными знаменателями, что знаменатель разности каждых двух из них (после приведения к несократимому виду) меньше знаменателя любой из исходных $2018$ дробей?
Прислать комментарий     Решение


Задача 66703

Тема:   [ Вписанные и описанные окружности ]
Сложность: 4
Классы: 8,9,10,11

Точка $O$ – центр описанной окружности остроугольного треугольника $ABC$, $AH$ – его высота. Точка $P$ – основание перпендикуляра, опущенного из точки $A$ на прямую $CO$. Докажите, что прямая $HP$ проходит через середину стороны $AB$.
Прислать комментарий     Решение


Задача 66706

Тема:   [ Вспомогательная раскраска (прочее) ]
Сложность: 4
Классы: 8,9,10,11

В таблице $10\times10$ записано $100$ различных чисел. За ход можно выбрать любой составленный из клеток прямоугольник и переставить все числа в нём симметрично относительно его центра («повернуть прямоугольник на $180^\circ$»). Всегда ли за $99$ ходов можно добиться, чтобы числа возрастали в каждой строке слева направо и в каждом столбце – снизу вверх?
Прислать комментарий     Решение


Задача 67009

Темы:   [ Десятичная система счисления ]
[ Дроби (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Имеется натуральное 1001-значное число $A$. 1001-значное число $Z$ – то же число $A$, записанное от конца к началу (например, для четырёхзначных чисел это могли быть 7432 и 2347). Известно, что $A > Z$. При каком $A$ частное $A/Z$ будет наименьшим (но строго больше 1)?
Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 50]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .