ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 44]      



Задача 66698

Темы:   [ Теория игр (прочее) ]
[ Разрезания (прочее) ]
Сложность: 4
Классы: 8,9,10,11

В углу шахматной доски $8\times8$ стоит фишка. Петя и Вася двигают фишку по очереди, начинает Петя. Он делает фишкой один ход как ферзём (пройденной считается только клетка, куда в итоге переместилась фишка), а Вася – два хода как королём (обе клетки считаются пройденными). Нельзя ставить фишку на клетку, где она уже бывала (включая исходную клетку). Кто не сможет сделать ход – проигрывает. Кто из ребят может играть так, чтобы всегда выигрывать, как бы ни играл соперник?
Прислать комментарий     Решение


Задача 66699

Тема:   [ Раскраски ]
Сложность: 4
Классы: 8,9,10,11

В каждой вершине выпуклого многогранника сходятся три грани. Каждая грань покрашена в красный, жёлтый или синий цвет. Докажите, что число вершин, в которых сходятся грани трёх разных цветов, чётно.
Прислать комментарий     Решение


Задача 66701

Тема:   [ Текстовые задачи (прочее) ]
Сложность: 4
Классы: 8,9,10,11

У Аладдина есть несколько одинаковых слитков золота, и иногда он просит джинна увеличить их количество. Джинн добавляет тысячу таких же слитков, но после этого берёт за услугу ровно половину от получившейся общей массы золота. Мог ли Аладдин оказаться в выигрыше после десяти таких просьб, если ни один слиток не пришлось распиливать?
Прислать комментарий     Решение


Задача 66702

Темы:   [ Дроби (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 8,9,10,11

Автор: Дидин М.

Существуют ли такие $2018$ положительных несократимых дробей с различными натуральными знаменателями, что знаменатель разности каждых двух из них (после приведения к несократимому виду) меньше знаменателя любой из исходных $2018$ дробей?
Прислать комментарий     Решение


Задача 66703

Тема:   [ Вписанные и описанные окружности ]
Сложность: 4
Классы: 8,9,10,11

Точка $O$ – центр описанной окружности остроугольного треугольника $ABC$, $AH$ – его высота. Точка $P$ – основание перпендикуляра, опущенного из точки $A$ на прямую $CO$. Докажите, что прямая $HP$ проходит через середину стороны $AB$.
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 44]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .