Страница: 1
2 >> [Всего задач: 6]
|
|
|
Сложность: 3 Классы: 8,9,10,11
|
Для всякого ли выпуклого четырёхугольника найдётся окружность, пересекающая каждую его сторону в двух внутренних точках?
|
|
|
Сложность: 3+ Классы: 8,9,10,11
|
У Аладдина есть несколько одинаковых слитков золота, и иногда он просит джинна увеличить их количество. Джинн добавляет тысячу таких же слитков, но после этого берёт за услугу ровно половину от получившейся общей массы золота. Мог ли Аладдин оказаться в выигрыше после десяти таких просьб, если ни один слиток не пришлось распиливать?
|
|
|
Сложность: 3+ Классы: 7,8,9,10
|
Петя и Вася по очереди проводят дороги на плоскости, начинает Петя. Дорога — это горизонтальная или вертикальная прямая, по которой можно двигаться только в одну сторону (выбранную при создании дороги). Всегда ли Вася может действовать так, чтобы после любого его хода можно было проехать по правилам от любого перекрёстка дорог до любого другого, как бы ни действовал Петя?
|
|
|
Сложность: 4- Классы: 9,10
|
Назовём последовательность натуральных чисел интересной, если каждый её член, кроме первого, является либо средним арифметическим, либо средним геометрическим двух соседних с ним членов. Сеня начал последовательность с трёх натуральных чисел, образующих возрастающую геометрическую прогрессию. Он хотел бы
продолжить свою последовательность до бесконечной интересной последовательности, которая ни с какого момента не становится ни арифметической, ни геометрической прогрессией.
Может ли оказаться, что этого нельзя сделать?
|
|
|
Сложность: 4- Классы: 9,10
|
Дана такая возрастающая бесконечная последовательность натуральных чисел
a1, ...,
an, ..., что каждый её член является либо средним арифметическим, либо средним геометрическим двух соседних. Обязательно ли с некоторого момента эта последовательность становится либо арифметической, либо геометрической прогрессией?
Страница: 1
2 >> [Всего задач: 6]