ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Найдите геометрическое место таких точек X, что касательные, проведенные из X к данной окружности, имеют данную длину.

Вниз   Решение


Три усталых ковбоя зашли в салун, и повесили свои шляпы на бизоний рог при входе. Когда глубокой ночью ковбои уходили, они были не в состоянии отличить одну шляпу от другой и поэтому разобрали три шляпы наугад. Найдите вероятность того, что никто из них не взял свою собственную шляпу.

ВверхВниз   Решение


На столе лежат купюры достоинством 1, 2, .. , 2n тугриков. Двое ходят по очереди. Каждым ходом игрок снимает со стола две купюры, большую отдает сопернику, а меньшую забирает себе. Каждый стремится получить как можно больше денег. Сколько тугриков получит начинающий при правильной игре?

ВверхВниз   Решение


Пусть x1, x2 — корни квадратного уравнения ax2 + bx + c = 0 и Sn = x1n + x2n ( n $ \geqslant$ 0). Докажите формулу

aSm + bSm - 1 + cSm - 2 = 0,        (m $\displaystyle \geqslant$ 2).


ВверхВниз   Решение


Графики квадратного трёхчлена и его производной разбивают координатную плоскость на четыре части. Сколько корней имеет этот квадратный трёхчлен?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 >> [Всего задач: 29]      



Задача 66466  (#1)

Тема:   [ Теория чисел. Делимость (прочее) ]
Сложность: 3
Классы: 8,9,10

Автор: Попов Л. А.

Существуют ли такие три попарно различных натуральных числа a, b и c, что числа a + b + c и a · b · c являются квадратами некоторых натуральных чисел?
Прислать комментарий     Решение


Задача 66472  (#1)

Тема:   [ Последовательности (прочее) ]
Сложность: 3
Классы: 8,9,10,11

В строку выписано 81 ненулевое число. Сумма любых двух соседних чисел положительна, а сумма всех чисел отрицательна. Каким может быть знак произведения всех чисел?
Прислать комментарий     Решение


Задача 66478  (#1)

Тема:   [ Теория чисел. Делимость (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Существует ли число, в десятичной записи квадрата которого имеется последовательность цифр «2018»?
Прислать комментарий     Решение


Задача 66484  (#1)

Темы:   [ Квадратный трехчлен (прочее) ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 3
Классы: 8,9,10,11

Графики квадратного трёхчлена и его производной разбивают координатную плоскость на четыре части. Сколько корней имеет этот квадратный трёхчлен?
Прислать комментарий     Решение


Задача 66490  (#1)

Темы:   [ Задачи-шутки ]
[ Кубические многочлены ]
Сложность: 3
Классы: 8,9,10,11

Решите уравнение $$ x^3+(\log_25+\log_32+\log_53) x=(\log_23+\log_35+\log_52) x^2+1. $$
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 >> [Всего задач: 29]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .