ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 203]      



Задача 64931

Темы:   [ Математическая логика (прочее) ]
[ Перебор случаев ]
Сложность: 3+
Классы: 5,6

После хоккейного матча Антон сказал, что он забил 3 шайбы, а Илья только одну. Илья сказал, что он забил 4 шайбы, а Серёжа целых 5. Серёжа сказал, что он забил 6 шайб, а Антон всего лишь две. Могло ли оказаться так, что втроём они забили 10 шайб, если известно, что каждый из них один раз сказал правду, а другой раз солгал?

Прислать комментарий     Решение

Задача 66290

Темы:   [ Графики и ГМТ на координатной плоскости ]
[ Перебор случаев ]
Сложность: 3+
Классы: 8,9

Постройте на координатной плоскости множество точек, удовлетворяющих равенству  max {x, x²} + min {y, y²} = 1.

Прислать комментарий     Решение

Задача 77867

Темы:   [ Уравнения в целых числах ]
[ Перебор случаев ]
[ Упорядочивание по возрастанию (убыванию) ]
Сложность: 3+
Классы: 8,9

Сумма обратных величин трёх натуральных чисел равна 1. Каковы эти числа?

Прислать комментарий     Решение

Задача 78239

Темы:   [ Признаки делимости на 3 и 9 ]
[ Перебор случаев ]
Сложность: 3+
Классы: 8,9

Имеется трёхзначное число abc, берём cba и вычтем из большего меньшее. Получим число  a1b1c1,  сделаем с ним то же самое и т.д.
Доказать, что на каком-то шаге мы получим или число 495, или 0. Случай  a1 = 0  допускается.

Прислать комментарий     Решение

Задача 79642

Темы:   [ Уравнения в целых числах ]
[ Перебор случаев ]
Сложность: 3+
Классы: 7,8,9

Пусть S(x) – сумма цифр натурального числа x. Решите уравнение  x + S(x) = 2001.

Прислать комментарий     Решение

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 203]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .