Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 64]
N точек плоскости, никакие три из которых не лежат на одной прямой, попарно соединили отрезками (каждую с каждой). Часть отрезков покрасили красным, остальные – синим. Все красные отрезки образовали замкнутую несамопересекающуюся ломаную, и все синие отрезки – тоже. Найдите все N, при которых это могло получиться.
Имеется 1955 точек. Какое максимальное число троек можно из них выбрать так,
чтобы каждые две тройки имели ровно одну общую точку?
а) Существуют ли два равных семиугольника, все вершины которых совпадают, но никакие стороны не совпадают?
б) А три таких семиугольника?
Список упорядоченных в порядке возрастания длин
сторон и диагоналей одного выпуклого четырехугольника
совпадает с таким же списком для другого четырехугольника.
Обязательно ли эти четырехугольники равны?
Пусть
n
3. Существуют ли
n точек, не лежащих
на одной прямой, попарные расстояния между которыми
иррациональны, а площади всех треугольников с вершинами
в них рациональны?
Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 64]