ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 34]      



Задача 35709

Темы:   [ Невыпуклые многоугольники ]
[ Разрезания на части, обладающие специальными свойствами ]
Сложность: 2+
Классы: 7,8,9

Существуют ли несколько невыпуклых многоугольников, из которых можно составить выпуклый?
Прислать комментарий     Решение


Задача 107754

Темы:   [ Невыпуклые многоугольники ]
[ Пятиугольники ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2+
Классы: 7,8,9

Существует ли невыпуклый пятиугольник, никакие две из пяти диагоналей которого не имеют общих точек (кроме вершин)?
Прислать комментарий     Решение


Задача 58146

Тема:   [ Невыпуклые многоугольники ]
Сложность: 3
Классы: 9,10

Верно ли, что любой пятиугольник лежит по одну сторону от не менее чем двух своих сторон?
Прислать комментарий     Решение


Задача 103758

Темы:   [ Невыпуклые многоугольники ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8,9

Может ли горящая в комнате свеча не освещать полностью ни одну из её стен, если в комнате а) 10 стен, б) 6 стен?

Прислать комментарий     Решение


Задача 65159

Темы:   [ Невыпуклые многоугольники ]
[ Деление с остатком ]
Сложность: 3+
Классы: 8,9

Секретная база окружена прозрачным извилистым забором в форме невыпуклого многоугольника, снаружи – болото. Через болото проложена прямая линия электропередач из 36 столбов, часть из которых стоит снаружи базы, а часть – внутри. (Линия электропередач не проходит через вершины забора.) Шпион обходит базу снаружи вдоль забора так, что забор всё время по правую руку от него. Каждый раз, оказавшись на линии электропередач, он считает, сколько всего столбов находится по левую руку от него (он их все видит). К моменту, когда шпион обошёл весь забор, он насчитал в сумме 2015 столбов. Сколько столбов находится внутри базы?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 34]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .