Страница:
<< 1 2 3 4 5 6
7 >> [Всего задач: 35]
|
|
|
Сложность: 3 Классы: 8,9,10,11
|
На плоскости провели $100$ прямых, среди них никакие две не параллельны и никакие три не проходят через одну точку. Рассмотрим всевозможные четырёхугольники, все стороны которых лежат на этих прямых (в том числе четырёхугольники, внутри которых проведены линии). Обязательно ли выпуклых среди них столько же, сколько невыпуклых?
|
|
|
Сложность: 3+ Классы: 8,9,10
|
Есть бумажный квадрат со стороной 2. Можно ли вырезать из него 12-угольник, у которого длины всех сторон равны 1, а все углы кратны 45°?
а) Существуют ли два равных семиугольника, все вершины которых совпадают, но никакие стороны не совпадают?
б) А три таких семиугольника?
|
|
|
Сложность: 5 Классы: 9,10,11
|
X и
Y — два выпуклых многоугольника, причём многоугольник
X содержится
внутри
Y. Пусть
S(
X) и
S(
Y) — площади этих многоугольников, а
P(
X) и
P(
Y) — их периметры. Доказать, что

< 2
. 
.
|
|
|
Сложность: 4- Классы: 8,9,10,11
|
Невыпуклый n-угольник разрезали прямолинейным разрезом на три части, после чего из двух частей сложили многоугольник, равный третьей части. Может ли n равняться
а) 5?
б) 4?
Страница:
<< 1 2 3 4 5 6
7 >> [Всего задач: 35]