ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 181]      



Задача 54143

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

Точки M и N – середины соседних сторон соответственно BC и CD параллелограмма ABCD. Докажите, что прямые DM и BN пересекаются на диагонали AC.

Прислать комментарий     Решение

Задача 54667

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Средняя линия треугольника ]
Сложность: 3
Классы: 8,9

Медианы BB1 и CC1 треугольника ABC пересекаются в точке M. Известно, что  AMB1C1.  Докажите, что треугольник ABC равнобедренный.

Прислать комментарий     Решение

Задача 56453

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Две пары подобных треугольников ]
[ Удвоение медианы ]
Сложность: 3
Классы: 8,9

Докажите, что медианы треугольника пересекаются в одной точке и делятся этой точкой в отношении  2 : 1,  считая от вершины.

Прислать комментарий     Решение

Задача 66917

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Трапеции (прочее) ]
Сложность: 3
Классы: 8,9,10

Автор: Burek D.

Дана равнобокая трапеция $ABCD$ с основаниями $AB$ и $CD$. Докажите, что точка пересечения медиан треугольника $ABD$ лежит на прямой $CF$, где $F$ – проекция $D$ на $AB$.
Прислать комментарий     Решение


Задача 78823

Тема:   [ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 3
Классы: 8

На плоскости проведены четыре прямые a, b, c, d. Никакие две из них не параллельны и никакие три не пересекаются в одной точке. Известно, что прямая a параллельна одной из медиан треугольника, образованного прямыми b, c, d. Доказать, что прямая b параллельна некоторой медиане треугольника, образованного прямыми a, c и d.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 181]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .