ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 181]      



Задача 54259

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

Две стороны треугольника равны 6 и 8. Медианы, проведённые к этим сторонам, взаимно перпендикулярны. Найдите третью сторону треугольника.

Прислать комментарий     Решение

Задача 54397

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Теорема Пифагора (прямая и обратная) ]
[ Медиана, проведенная к гипотенузе ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC угол B – прямой, медианы AD и BE взаимно перпендикулярны. Найдите угол C.

Прислать комментарий     Решение

Задача 54664

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Признаки подобия ]
[ Средняя линия треугольника ]
[ Параллелограмм Вариньона ]
Сложность: 3+
Классы: 8,9

Диагонали выпуклого четырёхугольника равны 12 и 18 и пересекаются в точке O.
Найдите стороны четырёхугольника с вершинами в точках пересечения медиан треугольников AOB, BOC, COD и AOD.

Прислать комментарий     Решение

Задача 54708

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Теорема косинусов ]
Сложность: 3+
Классы: 8,9

Медианы треугольника ABC, проведённые из вершин B и C, равны 6 и 9 и пересекаются в точке M. Известно, что $ \angle$BMC = 120o. Найдите стороны треугольника.

Прислать комментарий     Решение


Задача 55003

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3+
Классы: 8,9

Основание треугольника равно 20; медианы, проведённые к боковым сторонам, равны 18 и 24. Найдите площадь треугольника.

Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 181]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .