ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 53]      



Задача 78520

Темы:   [ Системы показательных уравнений и неравенств ]
[ Монотонность и ограниченность ]
Сложность: 3+
Классы: 9,10,11

Решить в положительных числах систему:

$\displaystyle \left\{\vphantom{
\begin{array}{rcl}
x^y&=&z,\\
y^z&=&x,\\
z^x&=&y.
\end{array}
}\right.$$\displaystyle \begin{array}{rcl}
x^y&=&z,\\
y^z&=&x,\\
z^x&=&y.
\end{array}$

Прислать комментарий     Решение

Задача 78804

Темы:   [ Системы показательных уравнений и неравенств ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8

Дано 17 натуральных чисел: a1, a2, ..., a17. Известно, что     Доказать, что  a1 = a2 = ... = a17.

Прислать комментарий     Решение

Задача 116254

Темы:   [ Показательные уравнения ]
[ Графики и ГМТ на координатной плоскости ]
[ Производная и касательная ]
Сложность: 3+
Классы: 9,10,11

Автор: Фольклор

Найдите такое значение  a > 1,  при котором уравнение  ax = logax  имеет единственное решение.

Прислать комментарий     Решение

Задача 61397

Тема:   [ Показательные функции и логарифмы (прочее) ]
Сложность: 3+
Классы: 9,10,11

Как расставить скобки в выражении 22...2, чтобы оно было максимальным?

Прислать комментарий     Решение

Задача 77927

Тема:   [ Показательные функции и логарифмы (прочее) ]
Сложность: 3+
Классы: 10,11

Даны три параллельные прямые на равных расстояниях друг от друга. Как надо изображать точками соответствующих прямых величины сопротивления, напряжения и силы тока в проводнике, чтобы, прикладывая линейку к точкам, изображающим значения сопротивления R и значения силы тока I, получить на шкале напряжения точку, изображающую величину напряжения V = I . R (точка каждой шкалы изображает одно и только одно число).
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 53]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .