ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 43]      



Задача 109016

Темы:   [ Неравенство Коши ]
[ Квадратичные неравенства (несколько переменных) ]
Сложность: 3+
Классы: 8,9,10

Дано четыре положительных числа a, p, c, k, произведение которых равно 1. Доказать, что  a² + p² + c² + k² + ap + ac + pc + ak + pk + ck ≥ 10.

Прислать комментарий     Решение

Задача 110169

Темы:   [ Упорядочивание по возрастанию (убыванию) ]
[ Квадратичные неравенства (несколько переменных) ]
Сложность: 4-
Классы: 7,8,9

Может ли в наборе из шести чисел  (a, b, c, a²/b, b²/c, c²/a},  где a, b, c – положительные числа, оказаться ровно три различных числа?

Прислать комментарий     Решение

Задача 115995

Темы:   [ Неравенство Коши ]
[ Квадратичные неравенства (несколько переменных) ]
Сложность: 4-
Классы: 9,10,11

Автор: Фольклор

Докажите, что если  x > 0,  y > 0,  z > 0 и  x² + y² + z² = 1,  то  ,  и укажите, в каком случае достигается равенство.

Прислать комментарий     Решение

Задача 67140

Темы:   [ Квадратный трехчлен (прочее) ]
[ Квадратичные неравенства (несколько переменных) ]
Сложность: 4
Классы: 9,10,11

Таня взяла список из ста чисел 1, 2, 3, . . . , 100 и вычеркнула несколько из них. Оказалось, что какие бы два числа из оставшихся Таня ни взяла в качестве $a$ и $b$, уравнение $x^2 + ax + b=0$ имеет хотя бы один действительный корень. Какое наибольшее количество чисел могло остаться не вычеркнутым?
Прислать комментарий     Решение


Задача 73779

Темы:   [ Средние величины ]
[ Квадратичные неравенства (несколько переменных) ]
[ Процессы и операции ]
Сложность: 4
Классы: 8,9,10

Даны два набора из n вещественных чисел:  a1, a2, ..., an  и  b1, b2, ..., bn.  Докажите, что если выполняется хотя бы одно из двух условий:
  а) из  ai < aj  следует, что  bi ≤ bj;
  б) из  ai < a < aj,  где  a = 1/n (a1 + a2 + ... + an),  следует, что  bi ≤ bj,
то верно неравенство   n(a1 b1 + a2b2 + ... + anbn) ≥ (a1 + a2 + ... + an)(b1 + b2 + ... + bn).

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 43]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .