|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Внутри окружности расположен выпуклый пятиугольник (вершины могут лежать как внутри, так и на окружности). Доказать, что хотя бы одна из его сторон не больше стороны правильного пятиугольника, вписанного в эту окружность. Для каждой вершины треугольника ABC нашли угол между высотой и биссектрисой, проведёнными из этой вершины. Оказалось, что эти углы в вершинах A и B равны друг другу и меньше, чем угол в вершине C. Чему равен угол C треугольника? Найдите высоту и радиус основания цилиндра наибольшего объёма, вписанного в сферу радиуса R . Постройте треугольник ABC по a, b и разности углов A и B. Имеется n случайных векторов вида (y1, y2, y3), где ровно одна случайная координата равна 1, остальные равны 0. Их складывают. Получается случайный вектор a с координатами (Y1, Y2, Y3). В прямоугольной трапеции основания равны 17 и 25, а большая боковая сторона равна 10. Через середину M этой стороны проведён к ней перпендикуляр, пересекающий продолжение второй боковой стороны в точке P. Найдите MP. Любую ли сумму из целого числа рублей больше семи, можно уплатить без сдачи денежными купюрами по 3 и 5 рублей? В параллелограмме отношение сторон и отношение диагоналей одинаковы и равны В равнобедренный треугольник ABC (AB = BC) вписана окружность. Прямая, параллельная стороне BC и касающаяся окружности, пересекает сторону AB в такой точке N такой, что AN = ⅜ AB. Найдите радиус окружности, если площадь треугольника ABC равна 12. Потроить треугольник по стороне a, стороне b и высоте к стороне a ha. Приведите пример такого квадратного трехчлена $P(x)$, что при любом $x$ справедливо равенство $P(x)+P(x+1)+\dots + P(x+10)=x^2$. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 66]
Существуют ли два одночлена, произведение которых равно –12а4b², а сумма является одночленом с коэффициентом 1?
Как правило знаков Декарта применить к оценке числа отрицательных корней многочлена f(x) = anxn + ... + a1x + a0?
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 66] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|