Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 42]
|
|
Сложность: 3+ Классы: 10,11
|
Можно ли отметить на числовой оси 50 отрезков (быть может, перекрывающихся)
так, что выполняются два условия:
а) длины отрезков – 1, 2, 3, ... , 50;
б) концы отрезков – это все целые точки от 1 до 100 включительно?
Имеются плашки (вырезанные из картона прямоугольники) размера 2×1. На
каждой плашке нарисована одна диагональ. Есть плашки двух сортов, так как
диагональ можно расположить двумя способами, причём плашек каждого сорта
имеется достаточно много. Можно ли выбрать 32 плашки и сложить из них квадрат 8×8 так, чтобы концы диагоналей нигде не совпали?
Несколько последовательных натуральных чисел выписали в строку в таком порядке,
что сумма каждых трёх подряд идущих чисел делится нацело на самое левое число
этой тройки. Какое максимальное количество чисел могло быть выписано, если
последнее число строки нёчётно?
Пусть ABC – остроугольный треугольник, C' и A' – произвольные точки на сторонах AB и BC соответственно, B' – середина стороны AC.
а) Докажите, что площадь треугольника A'B'C' не больше половины площади треугольника ABC.
б) Докажите, что площадь треугольника A'B'C' равна четверти
площади треугольника ABC тогда и только тогда, когда хотя бы одна из точек
A', C' совпадает с серединой соответствующей стороны.
|
|
Сложность: 3+ Классы: 10,11
|
На прямоугольном листе бумаги отмечены
а) несколько точек на одной прямой;
б) три точки.
Разрешается сложить лист бумаги несколько раз по прямой так, чтобы отмеченные точки не попали на линии сгиба, и затем один раз шилом проколоть сложенный лист насквозь. Докажите, что это можно сделать так, чтобы дырки оказались в точности в отмеченных точках и лишних дырок не получилось.
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 42]