Версия для печати
Убрать все задачи
Бильярд имеет форму прямоугольного треугольника, один из острых углов
которого равен 30°. Из этого угла по медиане противоположной стороны
выпущен шар (материальная точка). Доказать, что после восьми отражений (угол падения равен углу отражения) он попадёт в лузу, находящуюся в вершине угла 60°.

Решение
Докажите, что для любого натурального числа $n\geqslant 2$ и для любых действительных чисел $a_1, a_2, \ldots, a_n$,
удовлетворяющих условию $a_1+a_2+\ldots+a_n\ne 0$, уравнение
\begin{align*}
&a_1(x-a_2)(x-a_3)\ldots(x-a_n)+\\+&a_2(x-a_1)(x-a_3)\ldots(x-a_n)+\ldots\\
\ldots+&a_n(x-a_1)(x-a_2)\ldots(x-a_{n-1})=0
\end{align*}
имеет хотя бы один действительный корень.


Решение
Стороны треугольника разделены основаниями биссектрис на два отрезка каждая. Обязательно ли из шести образовавшихся отрезков можно составить два треугольника?

Решение