Страница: 1
2 3 4 >> [Всего задач: 16]
|
|
Сложность: 2+ Классы: 7,8,9
|
Из четырёх неравенств 2x > 70, x < 100, 4x > 25 и x > 5 два истинны и два ложны. Найдите значение x, если известно, что оно целое.
|
|
Сложность: 3 Классы: 6,7,8,9,10,11
|
Среди зрителей кинофестиваля было поровну мужчин и женщин. Всем зрителям понравилось одинаковое количество фильмов. Каждый фильм понравился восьми зрителям. Докажите, что не менее $3/7$ фильмов обладают следующим свойством: среди зрителей, которым фильм понравился, не менее двух мужчин.
|
|
Сложность: 3 Классы: 8,9,10,11
|
На доске $6\times6$ расставили шесть не угрожающих друг другу ладей. Затем каждое не занятое ладьёй поле покрасили по такому правилу: если ладьи, угрожающие этому полю, находятся от него на одинаковом расстоянии, то это поле закрашивают в красный цвет, а если на разном – то в синий цвет. Могли ли все не занятые поля оказаться
а) красными;
б) синими?
|
|
Сложность: 3 Классы: 6,7,8,9
|
Можно ли раскрасить все натуральные числа, большие 1, в три цвета (каждое число – в один цвет, все три цвета должны использоваться) так, чтобы цвет произведения любых двух чисел разного цвета отличался от цвета каждого из сомножителей?
|
|
Сложность: 3 Классы: 7,8,9
|
Есть 100 коробок, пронумерованных числами от 1 до 100. В одной коробке
лежит приз и ведущий знает, где он находится. Зритель может послать ведущему
пачку записок с вопросами, требующими ответа "да" или "нет". Ведущий перемешивает записки в пачке и, не оглашая вслух вопросов, честно отвечает на все. Какое наименьшее количество записок нужно послать, чтобы наверняка узнать, где находится приз?
Страница: 1
2 3 4 >> [Всего задач: 16]