|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Последовательные натуральные числа 2 и 3 делятся на последовательные нечётные числа 1 и 3 соответственно; числа 8, 9 и 10 – делятся на 1, 3 и 5 соответственно. Найдутся ли 11 последовательных натуральных чисел, которые делятся на 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 и 21 соответственно?
б) Из картона вырезали 8 выпуклых многоугольников и положили на стол так, что любые 7 из них можно прибить к столу двумя гвоздями, а все 8 — нельзя. Приведите пример таких многоугольников и их расположения. (Многоугольники могут перекрываться.) Вокруг стола пустили пакет с семечками. Первый взял 1 семечку, второй – 2, третий – 3 и так далее: каждый следующий брал на одну семечку больше. Известно, что на втором круге было взято в сумме на 100 семечек больше, чем на первом. Сколько человек сидело за столом? В квадрате 25×25 стоят числа 1 и –1. Вычислили все произведения этих чисел по строкам и по столбцам. Верно ли, что для любых четырёх попарно скрещивающихся прямых можно так выбрать по одной точке на каждой из них, чтобы эти точки были вершинами а) трапеции, б) параллелограмма? Найдите все корни уравнения (z – 1)n = (z + 1)n. Дана окружность и точка A внутри неё. |
Страница: << 1 2 3 4 5 >> [Всего задач: 23]
В колоде часть карт лежит рубашкой вниз. Время от времени Петя вынимает из колоды пачку из одной или нескольких подряд идущих карт, в которой верхняя и нижняя карты лежат рубашкой вниз, переворачивает всю пачку как одно целое и вставляет её в то же место колоды (если "пачка" состоит лишь из одной карты, то требуется только, чтобы она лежала рубашкой вниз). Докажите, что в конце концов все карты лягут рубашкой вверх, как бы ни действовал Петя.
В строку выписано 23 натуральных числа (не обязательно различных). Докажите, что между ними можно так расставить скобки, знаки сложения и умножения, что значение полученного выражения будет делиться на 2000 нацело.
Гриша записал в клетки шахматной доски числа 1, 2, 3, ..., 63, 64 в некотором порядке. Он сообщил Лёше только сумму чисел в каждом прямоугольнике из двух клеток и добавил, что 1 и 64 лежат на одной диагонали. Докажите, что по этой информации Лёша может точно определить, в какой клетке какое число записано.
Хорды AC и BD окружности с центром O пересекаются в точке K. Пусть M и N – центры описанных окружностей треугольников AKB и CKD соответственно. Докажите, что OM = KN.
Дана окружность и точка A внутри неё.
Страница: << 1 2 3 4 5 >> [Всего задач: 23] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|