ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Заславский А.А.

Алексей Александрович Заславский (род.1960 г.) - к.т.н. (1990), старший научный сотрудник ЦЭМИ РАН, председатель жюри олимпиады им. Шарыгина, редактор Journal of Classical Geometry, член редколлегии "Кванта".

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 184]      



Задача 108684

Темы:   [ Пересекающиеся окружности ]
[ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

Две окружности пересекаются в точках P и Q . Третья окружность с центром в точке P пересекает первую в точках A и B , а вторую – в точках C и D (см.рисунок). Докажите что углы AQD и BQC равны.
Прислать комментарий     Решение


Задача 109492

Темы:   [ Отрезок, видимый из двух точек под одним углом ]
[ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ ГМТ - прямая или отрезок ]
Сложность: 4-
Классы: 8,9,10

Треугольник ABC вписан в окружность с центром в O . X "– произвольная точка внутри треугольника ABC , такая, что XAB= XBC=ϕ , а P – такая точка, что PX OX , XOP=ϕ , причем углы XOP и XAB одинаково ориентированы. Докажите, что все такие точки P лежат на одной прямой.
Прислать комментарий     Решение


Задача 110787

Темы:   [ Пересекающиеся окружности ]
[ Величина угла между двумя хордами и двумя секущими ]
[ Вписанный угол равен половине центрального ]
Сложность: 4-
Классы: 8,9

Две равные окружности пересекаются в точках A и B . P – отличная от A и B точка одной из окружностей, X , Y – вторые точки пересечения прямых PA , PB с другой окружностью. Докажите, что прямая, проходящая через P и перпендикулярная AB , делит одну из дуг XY пополам.
Прислать комментарий     Решение


Задача 115496

Темы:   [ Средняя линия треугольника ]
[ Биссектриса угла (ГМТ) ]
[ Свойства биссектрис, конкуррентность ]
[ Описанные четырехугольники ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC точка I  — центр вписанной окружности. Точки M и N  — середины сторон BC и AC соответственно. Известно, что угол AIN прямой. Докажите, что угол  BIM  — также прямой.
Прислать комментарий     Решение


Задача 115869

Темы:   [ Построение треугольников по различным точкам ]
[ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Окружность Аполлония ]
Сложность: 4-
Классы: 8,9,10,11

В треугольнике ABC отметили центр вписанной окружности, основание высоты, опущенной на сторону AB, и центр вневписанной окружности, касающейся этой стороны и продолжений двух других. После этого сам треугольник стёрли. Восстановите его.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 184]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .