Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 196]
|
|
Сложность: 3+ Классы: 10,11
|
По рёбрам выпуклого многогранника с 2003 вершинами проведена замкнутая ломаная, проходящая через каждую вершину ровно один раз. Докажите, что в каждой из частей, на которые эта ломаная делит поверхность многогранника, количество граней с нечётным числом сторон нечётно.
Диагонали параллелограмма ABCD пересекаются в точке O.
Описанная окружность треугольника AOB касается прямой BC.
Докажите, что описанная окружность треугольника BOC касается прямой CD.
|
|
Сложность: 3+ Классы: 7,8,9
|
Номер нынешней олимпиады (70) образован последними цифрами года её проведения, записанными в обратном порядке.
Сколько еще раз повторится такая ситуация в этом тысячелетии?
|
|
Сложность: 3+ Классы: 8,9,10
|
Хорды AC и BD окружности пересекаются в точке P. Перпендикуляры к AC и BD в точках C и D,
соответственно пересекаются в точке Q .
Докажите, что прямые AB и PQ перпендикулярны.
|
|
Сложность: 3+ Классы: 10,11
|
Hа окружности с диаметром AB выбраны точки C и D. XY – диаметр, проходящий через середину K хорды CD. Tочка M – проекция точки X на прямую AC, а точка N – проекция точки Y на прямую BD. Докажите, что точки M, N и K лежат на одной прямой.
Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 196]