Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 184]
Диагонали параллелограмма ABCD пересекаются в точке O.
Окружность, проходящая через точки A, O, B касается прямой BC.
Докажите, что окружность, проходящая через точки B, O, C, касается прямой CD.
|
|
Сложность: 3+ Классы: 7,8,9
|
Номер нынешней олимпиады (70) образован последними цифрами года её проведения, записанными в обратном порядке.
Сколько еще раз повторится такая ситуация в этом тысячелетии?
|
|
Сложность: 3+ Классы: 8,9,10
|
Хорды AC и BD окружности пересекаются в точке P. Перпендикуляры к AC и BD в точках C и D,
соответственно пересекаются в точке Q .
Докажите, что прямые AB и PQ перпендикулярны.
|
|
Сложность: 3+ Классы: 10,11
|
Hа окружности с диаметром AB выбраны точки C и D. XY – диаметр, проходящий через середину K хорды CD. Tочка M – проекция точки X на прямую AC, а точка N – проекция точки Y на прямую BD. Докажите, что точки M, N и K лежат на одной прямой.
|
|
Сложность: 3+ Классы: 10,11
|
Четырёхугольник ABCD вписан в окружность, центр O которой лежит
внутри него. Kасательные к окружности в точках A и C и прямая, симметричная BD относительно точки O, пересекаются в одной точке. Докажите, что произведения расстояний от O до противоположных сторон четырёхугольника равны.
Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 184]