ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Заславский А.А.

Алексей Александрович Заславский (род.1960 г.) - к.т.н. (1990), старший научный сотрудник ЦЭМИ РАН, председатель жюри олимпиады им. Шарыгина, редактор Journal of Classical Geometry, член редколлегии "Кванта".

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 184]      



Задача 64388

Темы:   [ Четырехугольники (построения) ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
[ Симметрия и построения ]
[ Ортоцентр и ортотреугольник ]
Сложность: 4-
Классы: 8,9

Диагонали выпуклого четырёхугольника ABCD пересекаются в точке L. В треугольнике ABL отметили точку пересечения высот H, а в треугольниках BCL, CDL и DAL – центры O1, O2 и O3 описанных окружностей. Затем весь рисунок, кроме точек H, O1, O2, O3, стерли. Восстановите его.

Прислать комментарий     Решение

Задача 64706

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Свойства биссектрис, конкуррентность ]
[ Биссектриса угла (ГМТ) ]
[ Правильный (равносторонний) треугольник ]
Сложность: 4-
Классы: 8,9

Биссектрисы AA1 и BB1 треугольника ABC пересекаются в точке I. На отрезках A1I и B1I построены как на основаниях равнобедренные треугольники с вершинами A2 и B2, лежащими на прямой AB. Известно, что прямая CI делит отрезок A2B2 пополам. Верно ли, что треугольник ABC – равнобедренный?

Прислать комментарий     Решение

Задача 64725

Темы:   [ Признаки и свойства параллелограмма ]
[ Вписанные и описанные окружности ]
[ Четыре точки, лежащие на одной окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Признаки подобия ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 10,11

На сторонах AD и CD параллелограмма ABCD с центром O отмечены такие точки P и Q соответственно, что  ∠AOP = ∠COQ = ∠ABC.
  а) Докажите, что  ∠ABP = ∠CBQ.
  б) Докажите, что прямые AQ и CP пересекаются на описанной окружности треугольника ABC.

Прислать комментарий     Решение

Задача 64742

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Гомотетия помогает решить задачу ]
[ Теорема Паскаля ]
[ Формула Эйлера ]
[ Длины сторон, высот, медиан и биссектрис ]
Сложность: 4-
Классы: 9,10,11

Пусть O, I – центры описанной и вписанной окружностей прямоугольного треугольника; R, r – радиусы этих окружностей; J – точка, симметричная вершине прямого угла относительно I. Найдите OJ.

Прислать комментарий     Решение

Задача 64915

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Длины сторон, высот, медиан и биссектрис ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 4-
Классы: 9,10

Даны точки A, B. Найдите геометрическое место таких точек C, что C, середины отрезков AC, BC и точка пересечения медиан треугольника ABC лежат на одной окружности.

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 184]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .