ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Заславский А.А.

Алексей Александрович Заславский (род.1960 г.) - к.т.н. (1990), старший научный сотрудник ЦЭМИ РАН, председатель жюри олимпиады им. Шарыгина, редактор Journal of Classical Geometry, член редколлегии "Кванта".

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 184]      



Задача 65027

Темы:   [ Выпуклые многоугольники ]
[ Разные задачи на разрезания ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9

Существует ли выпуклый семиугольник, который можно разрезать на 2011 равных треугольников?

Прислать комментарий     Решение

Задача 65364

Темы:   [ Равные треугольники. Признаки равенства (прочее) ]
[ Необычные построения (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

Есть два равных фанерных треугольника, один из углов которых равен α (эти углы отмечены). Расположите их на плоскости так, чтобы какие-то три вершины образовали угол, равный α/2. (Никакими инструментами, даже карандашом, пользоваться нельзя.)

Прислать комментарий     Решение

Задача 65551

Темы:   [ Пересекающиеся окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Признаки подобия ]
Сложность: 3+
Классы: 9,10,11

Три окружности проходят через точку X. A, B, C – точки их пересечения, отличные от X. A' – вторая точка пересечения прямой AX и описанной окружности треугольника BCX. Точки B' и C' определяются аналогично. Докажите, что треугольники ABC', AB'C и A'BC подобны.

Прислать комментарий     Решение

Задача 65556

Темы:   [ Вписанные и описанные окружности ]
[ Вспомогательные равные треугольники ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3+
Классы: 8,9,10,11

Вписанная окружность треугольника ABC касается сторон BC, CA и AB в точках A', B' и C'. Известно, что  AA' = BB' = CC'.
Обязательно ли треугольник ABC правильный?

Прислать комментарий     Решение

Задача 66069

Темы:   [ Турниры и турнирные таблицы ]
[ Примеры и контрпримеры. Конструкции ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 6,7

В турнире по волейболу каждая команда встречалась с каждой по одному разу. Каждая встреча состояла из нескольких партий – до трёх побед одной из команд. Если встреча заканчивалась со счётом  3 : 0  или  3 : 1,  то выигравшая команда получала 3 очка, а проигравшая – 0. Если же счёт партий был
3 : 2,  то победитель получал 2 очка, а побеждённый – 1 очко. По итогам турнира оказалось, что команда "Хитрецы" набрала больше всех очков, а команда "Простаки" – меньше всех. Но "Хитрецы" выиграли меньше встреч, чем проиграли, а у "Простаков" наоборот, победных встреч оказалось больше, чем проигранных. При каком наименьшем количестве команд такое возможно?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 184]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .