ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

На рёбрах AB , BC и AD тетраэдра ABCD взяты точки K , N и M соответственно, причём AK:KB = BN:NC = 2:1 , AM:MD = 3:1 . Постройте сечение тетраэдра плоскостью, проходящей через точки K , M и N . В каком отношении эта плоскость делит ребро CD ?

Вниз   Решение


На боковых сторонах AB и BC равнобедренного треугольника ABC расположены точки соответственно M и N так, что = m , = n . Прямая MN пересекает высоту BD треугольника в точке O . Найдите отношение .

ВверхВниз   Решение


Докажите, что медианы треугольника ABC пересекаются в одной точке и делятся ею в отношении 2 : 1, считая от вершины.

ВверхВниз   Решение


Докажите, что если  а < 1,  b < 1  и  a + b ≥ 0,5,  то  (1 – a)(1 – b) ≤ 9/16.

ВверхВниз   Решение


Основание пирамиды SABCD – параллелограмм ABCD . Какая фигура получилась в сечении этой пирамиды плоскостью ABM , где M – точка на ребре SC ?

ВверхВниз   Решение


У короля 19 баронов-вассалов. Может ли оказаться так, что у каждого вассального баронства одно, пять или девять соседних баронств?

ВверхВниз   Решение


В круге с центром O проведена хорда AB. Вычислите площадь получившегося сегмента, если  ∠AOB = α,  а радиус круга равен r.

ВверхВниз   Решение


На сторонах AB, AC и BC треугольника ABC взяли точки K, L и M соответственно так, что  ∠A = ∠KLM = ∠C.
Докажите, что если  AL + LM + MB > CL + LK + KB,  то  LM < LK.

ВверхВниз   Решение


Докажите, что если α , β и γ – углы остроугольного треугольника, то sin α+ sin β+ sin γ>2 .

ВверхВниз   Решение


Докажите, что  x² + y² + 1 ≥ xy + x + y  при любых x и y.

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 14]      



Задача 52628

Темы:   [ Прямые, касающиеся окружностей (прочее) ]
[ Центральный угол. Длина дуги и длина окружности ]
Сложность: 2+
Классы: 8,9

Около данного круга опишите треугольник с двумя данными углами.

Прислать комментарий     Решение


Задача 53072

Темы:   [ Прямые, касающиеся окружностей (прочее) ]
[ Трапеции (прочее) ]
Сложность: 3
Классы: 8,9

Окружность, построенная на основании BC трапеции ABCD как на диаметре, проходит через середины диагоналей AC и BD трапеции и касается основания AD. Найдите углы трапеции.

Прислать комментарий     Решение


Задача 55472

Темы:   [ Прямые, касающиеся окружностей (прочее) ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3
Классы: 8,9

Из точки A проведены касательные AB и AC к окружности с центром O. Докажите, что если из точки M отрезок AO виден под углом 90o, то отрезки OB и OC видны из нее под равными углами.

Прислать комментарий     Решение


Задача 52605

Темы:   [ Величина угла между двумя хордами и двумя секущими ]
[ Прямые, касающиеся окружностей (прочее) ]
Сложность: 3-
Классы: 8,9

Внутри данной окружности находится другая окружность. CAE и DBF - две хорды большей окружности (не пересекающиеся), касающиеся меньшей окружности в точках A и B;CND, EPF - дуги между концами хорд. Найдите угловую величину дуги CND, если дуги AMB и EPF содержат соответственно 154o и 70o.

Прислать комментарий     Решение


Задача 55759

Темы:   [ Касающиеся окружности ]
[ Прямые, касающиеся окружностей (прочее) ]
[ Гомотетичные окружности ]
Сложность: 3
Классы: 8,9

Две окружности касаются в точке K. Прямая, проходящая через точку K, пересекает эти окружности в точках A и B. Докажите, что касательные к окружностям, проведенные через точки A и B, параллельны.

Прислать комментарий     Решение


Страница: 1 2 3 >> [Всего задач: 14]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .