Страница:
<< 1 2 3 4
5 >> [Всего задач: 23]
|
|
Сложность: 3+ Классы: 10,11
|
Пусть x, y, z – любые числа из интервала (0, π/2). Докажите неравенство
|
|
Сложность: 4- Классы: 10,11
|
Целые ненулевые числа a1, a2, ..., an таковы, что равенство
выполнено при всех целых значениях
x, входящих в область определения дроби, стоящей в левой части.
a) Докажите, что число
n чётно.
б) При каком наименьшем
n такие числа существуют?
|
|
Сложность: 4 Классы: 9,10,11
|
На биссектрисе AA1 треугольника ABC выбрана точка X. Прямая BX пересекает сторону AC в точке B1, а прямая CX пересекает сторону AB в точке C1. Отрезки A1B1 и CC1 пересекаются в точке P, а отрезки A1C1 и BB1 пересекаются в точке Q. Докажите, что углы PAC и QAB равны.
|
|
Сложность: 4 Классы: 10,11
|
Можно ли замостить плоскость параболами, среди которых нет равных? (Требуется, чтобы каждая точка плоскости принадлежала ровно одной параболе и чтобы ни одна парабола не переводилась ни в какую другую параболу движением.)
|
|
Сложность: 4+ Классы: 9,10,11
|
Докажите, что если
(
x+)(
y+)
=1
, то
x+y=0
.
Страница:
<< 1 2 3 4
5 >> [Всего задач: 23]