ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 21]      



Задача 98505

Темы:   [ Рациональные функции (прочее) ]
[ Четность и нечетность ]
[ Монотонность, ограниченность ]
Сложность: 4-
Классы: 10,11

Целые ненулевые числа a1, a2, ..., an таковы, что равенство

выполнено при всех целых значениях x, входящих в область определения дроби, стоящей в левой части.
  a) Докажите, что число n чётно.
  б) При каком наименьшем n такие числа существуют?

Прислать комментарий     Решение

Задача 65855

Темы:   [ Теорема синусов ]
[ Теоремы Чевы и Менелая ]
[ Монотонность, ограниченность ]
Сложность: 4
Классы: 9,10,11

На биссектрисе AA1 треугольника ABC выбрана точка X. Прямая BX пересекает сторону AC в точке B1, а прямая CX пересекает сторону AB в точке C1. Отрезки A1B1 и CC1 пересекаются в точке P, а отрезки A1C1 и BB1 пересекаются в точке Q. Докажите, что углы PAC и QAB равны.

Прислать комментарий     Решение

Задача 109565

Темы:   [ Иррациональные уравнения ]
[ Монотонность и ограниченность ]
[ Монотонность, ограниченность ]
Сложность: 4+
Классы: 9,10,11

Докажите, что если (x+)(y+)=1 , то x+y=0 .
Прислать комментарий     Решение


Задача 109602

Темы:   [ Тригонометрические уравнения ]
[ Тригонометрические неравенства ]
[ Монотонность и ограниченность ]
[ Монотонность, ограниченность ]
Сложность: 5
Классы: 9,10,11

Решите уравнение cos(cos(cos(cos x)))= sin(sin(sin(sin x))) .
Прислать комментарий     Решение


Задача 64745

Темы:   [ Четырехугольники (прочее) ]
[ Кривые второго порядка ]
[ Проективные преобразования плоскости ]
[ Монотонность, ограниченность ]
Сложность: 5+
Классы: 10,11

Автор: Нилов Ф.

Проекции двух точек на стороны четырёхугольника лежат на двух различных концентрических окружностях (проекции каждой точки образуют вписанный четырёхугольник, а радиусы соответствующих окружностей различны). Докажите, что четырёхугольник – параллелограмм.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 21]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .