Страница:
<< 1 2 3
4 5 >> [Всего задач: 22]
|
|
Сложность: 4+ Классы: 9,10,11
|
На окружности сидят 12 кузнечиков в различных точках. Эти точки делят окружность на 12 дуг. Отметим 12 середин дуг. По сигналу кузнечики одновременно прыгают, каждый – в ближайшую по часовой стрелке отмеченную точку. Снова образуются 12 дуг, прыжки в середины дуг повторяются, и т. д. Может ли хотя бы один кузнечик вернуться в свою исходную точку после того, как им сделано a) 12 прыжков; б) 13 прыжков?
|
|
Сложность: 4+ Классы: 10,11
|
F(x) – возрастающая функция, определённая на отрезке [0, 1]. Известно, что область её значений принадлежит отрезку [0, 1]. Доказать, что, каково бы ни было натуральное n, график функции можно покрыть N прямоугольниками, стороны которых параллельны осям координат так, что площадь каждого равна 1/n². (В прямоугольник мы включаем его внутренние точки и точки его границы.)
|
|
Сложность: 4+ Классы: 9,10,11
|
Существует ли ограниченная функция
f :


такая, что
f(1)
>0
и
f(
x)
удовлетворяет при всех
x,y
неравенству
f2(x+y)
f2(x)+2f(xy)+f2(y)?
Пусть ABC – остроугольный треугольник, C' и A' – произвольные точки на сторонах AB и BC соответственно, B' – середина стороны AC.
а) Докажите, что площадь треугольника A'B'C' не больше половины площади треугольника ABC.
б) Докажите, что площадь треугольника A'B'C' равна четверти
площади треугольника ABC тогда и только тогда, когда хотя бы одна из точек
A', C' совпадает с серединой соответствующей стороны.
|
|
Сложность: 3+ Классы: 10,11
|
Пусть x, y, z – любые числа из интервала (0, π/2). Докажите неравенство
Страница:
<< 1 2 3
4 5 >> [Всего задач: 22]