ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 21]      



Задача 64548

Темы:   [ Квадратичные неравенства (несколько переменных) ]
[ Монотонность, ограниченность ]
Сложность: 3+

Найдите наибольшее значение выражения  a + b + c + d – ab – bc – cd – da,  если каждое из чисел a, b, c и d принадлежит отрезку  [0, 1].

Прислать комментарий     Решение

Задача 109617

Темы:   [ Задачи на движение ]
[ Монотонность, ограниченность ]
[ Возрастание и убывание. Исследование функций ]
[ Подсчет двумя способами ]
Сложность: 4-
Классы: 9,10,11

Несколько путников движутся с постоянными скоростями по прямолинейной дороге. Известно, что в течение некоторого периода времени сумма попарных расстояний между ними монотонно уменьшалась. Докажите, что в течение того же периода сумма расстояний от некоторого путника до всех остальных тоже монотонно уменьшалась.

Прислать комментарий     Решение

Задача 109440

Темы:   [ Смешанные уравнения и системы уравнений ]
[ Монотонность, ограниченность ]
Сложность: 4
Классы: 10,11

Решите уравнение:  (x³ – 2)(2sin x – 1) + (2x³ – 4) sin x = 0.

Прислать комментарий     Решение

Задача 111264

Темы:   [ Непрерывность и компактность ]
[ Монотонность, ограниченность ]
Сложность: 4
Классы: 10,11

Непрерывная функция f(x) такова, что для всех действительных x выполняется неравенство: f(x2)-(f(x))2 . Верно ли, что функция f(x) обязательно имеет точки экстремума?
Прислать комментарий     Решение


Задача 116558

Темы:   [ Системы алгебраических нелинейных уравнений ]
[ Монотонность, ограниченность ]
Сложность: 4
Классы: 9,10

Ненулевые числа a, b, c таковы, что каждые два из трёх уравнений  ax11 + bx4 + c = 0,  bx11 + cx4 + a = 0,  cx11 + ax4 + b = 0  имеют общий корень. Докажите, что все три уравнения имеют общий корень.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 21]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .