ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 [Всего задач: 21]      



Задача 98162

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Выпуклые тела ]
[ Свойства сечений ]
[ Монотонность, ограниченность ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 5+
Классы: 10,11

Автор: Анджанс А.

Число рёбер многогранника равно 100.
  а) Какое наибольшее число рёбер может пересечь плоскость, не проходящая через его вершины, если многогранник выпуклый?
  б) Докажите, что для невыпуклого многогранника это число может равняться 96,
  в) но не может равняться 100.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 [Всего задач: 21]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .