ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Каждая сторона правильного треугольника разбита на n равных отрезков, и через все точки деления проведены прямые, параллельные сторонам. Данный треугольник разбился на n² маленьких треугольников-клеток. Треугольники, расположенные между двумя соседними параллельными прямыми, образуют полоску.
  а) Какое наибольшее число клеток можно отметить, чтобы никакие две отмеченные клетки не принадлежали одной полоске ни по одному из трёх направлений, если  n = 10?
  б) Тот же вопрос для  n = 9.

Вниз   Решение


В треугольнике ABC взяты точка N на стороне AB, а точка M – на стороне AC. Отрезки CN и BM пересекаются в точке O,  AN : NB = 2 : 3,  BO : OM = 5 : 2.
Найдите  CO : ON.

Вверх   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 19]      



Задача 77931

Тема:   [ Проективные преобразования плоскости ]
Сложность: 4
Классы: 8,9

Проекцией точки A из точки O на плоскость P называется точка A', в которой прямая OA пересекает плоскость P. Проекцией треугольника называется фигура, состоящая из всех проекций его точек. Какими фигурами может быть проекция треугольника, если точка O не лежит в его плоскости?
Прислать комментарий     Решение


Задача 58419

Тема:   [ Проективные преобразования плоскости ]
Сложность: 6
Классы: 10,11

Докажите, что если плоскости $ \alpha_{1}^{}$ и $ \alpha_{2}^{}$ пересекаются, то центральное проектирование $ \alpha_{1}^{}$ на $ \alpha_{2}^{}$ с центром O задает взаимно однозначное отображение плоскости $ \alpha_{1}^{}$ с выкинутой прямой l1 на плоскость $ \alpha_{2}^{}$ с выкинутой прямой l2, где l1 и l2 — прямые пересечения плоскостей $ \alpha_{1}^{}$ и $ \alpha_{2}^{}$ соответственно с плоскостями, проходящими через O и параллельными $ \alpha_{2}^{}$ и $ \alpha_{1}^{}$. При этом на l1 отображение не определено.
Прислать комментарий     Решение


Задача 58420

Тема:   [ Проективные преобразования плоскости ]
Сложность: 6
Классы: 10,11

Докажите, что при центральном проектировании прямая, не являющаяся исключительной, проецируется в прямую.
Прислать комментарий     Решение


Задача 58421

Тема:   [ Проективные преобразования плоскости ]
Сложность: 6
Классы: 10,11

Докажите, что если наряду с обычными точками и прямыми рассматривать бесконечно удаленные, то
а) через любые две точки проходит единственная прямая;
б) любые две прямые, лежащие в одной плоскости, пересекаются в единственной точке;
в) центральное проектирование одной плоскости на другую является взаимно однозначным отображением.
Прислать комментарий     Решение


Задача 58422

Тема:   [ Проективные преобразования плоскости ]
Сложность: 6
Классы: 10,11

а) Докажите, что проективное преобразование P плоскости, переводящее бесконечно удаленную прямую в бесконечно удаленную прямую, является аффинным.
б) Докажите, что если точки A, B, C, D лежат па прямой, параллельной исключительной прямой проективного преобразования P плоскости $ \alpha$, то P(A)P(B) : P(C)P(D) = AB : CD.
в) Докажите, что если проективное преобразование P переводит параллельные прямые l1 и l2 в параллельные прямые, то либо P аффинно, либо его исключительная прямая параллельна прямым l1 и l2.
г) Пусть P — взаимно однозначное преобразование множества всех конечных и бесконечных точек плоскости, которое каждую прямую переводит в прямую. Докажите, что P проективно.
Прислать комментарий     Решение


Страница: 1 2 3 4 >> [Всего задач: 19]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .