Страница:
<< 11 12 13 14
15 16 17 >> [Всего задач: 264]
|
|
|
Сложность: 4 Классы: 10,11
|
На левую чашу весов положили две круглых монеты,
а на правую — ещё одну, так что весы оказались в равновесии. А какая из
чаш перевесит, если каждую из монет заменить шаром того же радиуса? (Все
шары и монеты изготовлены целиком из одного и того же материала, все
монеты имеют одинаковую толщину.)
|
|
|
Сложность: 4 Классы: 10,11
|
Дан трёхгранный угол с вершиной
O и точка
A
на его ребре. По двум другим его рёбрам скользят
точки
B и
C . Найдите геометрическое место
точек пересечения медиан треугольников
ABC .
|
|
|
Сложность: 4 Классы: 10,11
|
Сторона основания
ABC пирамиды
TABC равна 4, боковое
ребро
TA перпендикулярно плоскости основания. Найдите
площадь сечения пирамиды плоскостью, проходящей через
середины рёбер
AC и
BT параллельно медиане
BD
грани
BCT , если известно, что расстояние от вершины
T до этой плоскости равно
.
Как надо расположить в пространстве прямоугольный параллелепипед, чтобы площадь
его проекции на горизонтальную плоскость была наибольшей?
|
|
|
Сложность: 4+ Классы: 10,11
|
Существует ли выпуклое тело, отличное от шара, ортогональные проекции
которого на некоторые три попарно перпендикулярные плоскости являются
кругами?
Страница:
<< 11 12 13 14
15 16 17 >> [Всего задач: 264]