ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 400]      



Задача 116013

Темы:   [ Признаки и свойства параллелограмма ]
[ Вписанные четырехугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Ортоцентр и ортотреугольник ]
Сложность: 3
Классы: 8,9,10

Автор: Фольклор

В остроугольном треугольнике АВС угол В равен 45°, АМ и CN – высоты, О – центр описанной окружности, Н – ортоцентр.
Докажите, что ОNHМ – параллелограмм.

Прислать комментарий     Решение

Задача 116138

Темы:   [ Признаки и свойства параллелограмма ]
[ Векторы помогают решить задачу ]
Сложность: 3
Классы: 10,11

Дан четырёхугольник ABCD. A', B', C' и D' – середины сторон BC, CD, DA и AB соответственно. Известно, что  AA' = CC' и BB' = DD'.
Bерно ли, что ABCD – параллелограмм?

Прислать комментарий     Решение

Задача 116480

Темы:   [ Признаки и свойства параллелограмма ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Средняя линия треугольника ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 3
Классы: 7,8,9

Диагонали параллелограмма ABCD пересекаются в точке O. На продолжении стороны AB за точку B отмечена такая точка M, что  MC = MD.
Докажите, что  ∠AMO = ∠MAD.

Прислать комментарий     Решение

Задача 53474

Темы:   [ Признаки и свойства параллелограмма ]
[ Средняя линия треугольника ]
Сложность: 3
Классы: 8,9

Через вершины A, B и C треугольника ABC проведены прямые, параллельные противолежащим сторонам. Эти прямые пересекаются в точках C1, A1 и B1. Докажите, что стороны треугольника ABC являются средними линиями треугольника A1B1C1.

Прислать комментарий     Решение


Задача 54078

Темы:   [ Признаки и свойства параллелограмма ]
[ Параллелограммы ]
Сложность: 3
Классы: 8,9

Треугольники ABC и AB1C1 имеют общую медиану AM. Докажите, что BC1 = B1C.

Прислать комментарий     Решение


Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 400]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .