Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 402]
Из произвольной точки основания равнобедренного треугольника с боковой стороной, равной a, проведены прямые, параллельные боковым сторонам. Найдите периметр получившегося четырёхугольника.
Биссектриса угла параллелограмма делит сторону параллелограмма на отрезки, равные a и b. Найдите стороны параллелограмма.
Докажите, что отрезок, соединяющий середины противоположных сторон параллелограмма, проходит через его центр.
Высота параллелограмма, проведённая из вершины тупого угла, равна a и делит сторону пополам. Острый угол параллелограмма равен 30°.
Найдите диагонали параллелограмма.
На диагонали BD параллелограмма ABCD взята точка K. Прямая AK пересекает прямые BC и CD в точках L и M. Докажите, что AK² = LK·KM.
Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 402]