ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 400]      



Задача 54709

Темы:   [ Признаки и свойства параллелограмма ]
[ Теорема косинусов ]
Сложность: 3-
Классы: 8,9

Стороны параллелограмма равны 2 и 4, а угол между ними равен 60o. Через вершину этого угла проведены прямые, проходящие через середины двух других сторон параллелограмма. Найдите косинус угла между этими прямыми.

Прислать комментарий     Решение


Задача 53482

Темы:   [ Признаки и свойства параллелограмма ]
[ Средняя линия треугольника ]
[ Параллелограмм Вариньона ]
Сложность: 3-
Классы: 8,9

У четырёхугольника диагонали равны a и b. Найдите периметр четырёхугольника, вершинами которого являются середины сторон данного.

Прислать комментарий     Решение


Задача 53483

Темы:   [ Признаки и свойства параллелограмма ]
[ Вспомогательные равные треугольники ]
Сложность: 3-
Классы: 8,9

На сторонах AB, BC, CD и DA четырёхугольника ABCD отмечены соответственно точки M, N, P и Q так, что  AM = CP,  BN = DQ,  BM = DP,  NC = QA.  Докажите, что ABCD и MNPQ – параллелограммы.

Прислать комментарий     Решение

Задача 53484

Темы:   [ Признаки и свойства параллелограмма ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Биссектриса угла ]
Сложность: 3-
Классы: 8,9

Найдите периметр параллелограмма, если биссектриса одного из его углов делит сторону параллелограмма на отрезки 7 и 14.

Прислать комментарий     Решение

Задача 53493

Темы:   [ Признаки и свойства параллелограмма ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3-
Классы: 8,9

Точки пересечения биссектрис внутренних углов параллелограмма являются вершинами некоторого четырёхугольника. Докажите, что этот четырёхугольник — прямоугольник.

Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 400]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .