ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 400]      



Задача 98316

Темы:   [ Признаки и свойства параллелограмма ]
[ Ромбы. Признаки и свойства ]
[ Симметрия помогает решить задачу ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 3
Классы: 8,9

Окружность пересекает каждую сторону ромба в двух точках и делит её на три отрезка. Обойдём контур ромба, начав с какой-нибудь вершины, по часовой стрелке, и покрасим три отрезка каждой стороны последовательно в красный, белый и синий цвета. Докажите, что сумма длин красных отрезков равна сумме длин синих.

Прислать комментарий     Решение

Задача 108161

Темы:   [ Признаки и свойства параллелограмма ]
[ Измерение длин отрезков и мер углов. Смежные углы. ]
Сложность: 3
Классы: 8,9

В треугольнике ABC точки A', B', C' лежат на сторонах BC, CA и AB соответственно. Известно, что  ∠AC'B' = ∠B'A'C,  ∠CB'A' = ∠A'C'B,  ∠BA'C' = ∠C'B'A.  Докажите, что точки A', B', C' – середины сторон треугольника ABC.

Прислать комментарий     Решение

Задача 108585

Темы:   [ Признаки и свойства параллелограмма ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

В треугольнике ABC высоты AA1 и CC1 пересекаются в точке H, лежащей внутри треугольника. Известно, что H – середина AA1, а  CH : HC1 = 2 : 1.  Найдите величину угла B.

Прислать комментарий     Решение

Задача 108694

Темы:   [ Признаки и свойства параллелограмма ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3
Классы: 8,9

Точки K и L – середины сторон AB и BC четырёхугольника ABCD. На стороне CD выбрана такая точка M, что  CM : DM = 2 : 1.  Известно, что  DK || BM  и
AL || CD.  Докажите, что четырёхугольник ABCD – трапеция.

Прислать комментарий     Решение

Задача 111583

Темы:   [ Признаки и свойства параллелограмма ]
[ Признаки и свойства касательной ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3
Классы: 8,9

В треугольник ABC с прямым углом C вписана окружность, касающаяся сторон AC , BC и AB в точках M , K и N соответственно. Через точку K провели прямую, перпендикулярную отрезку MN . Она пересекла катет AC в точке X . Докажите, что CK=AX .
Прислать комментарий     Решение


Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 400]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .