ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 60]      



Задача 116164

Темы:   [ Четырехугольники (прочее) ]
[ Свойства биссектрис, конкуррентность ]
[ Углы между биссектрисами ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
[ Применение тригонометрических формул (геометрия) ]
[ Тождественные преобразования (тригонометрия) ]
Сложность: 4+
Классы: 10,11

Автор: Фольклор

B выпуклом четырёхугольнике ABCD:  ACBD,  ∠BCA = 10°,  ∠BDA = 20°,  ∠BAC = 40°.  Найдите ∠BDC.

Прислать комментарий     Решение

Задача 115878

Темы:   [ Четырехугольники (прочее) ]
[ Три прямые, пересекающиеся в одной точке ]
[ Решение задач при помощи аффинных преобразований ]
[ Аналитический метод в геометрии ]
Сложность: 5-
Классы: 8,9,10,11

Автор: Нилов Ф.

Дан четырёхугольник ABCD, противоположные стороны которого пересекаются в точках P и Q. Две прямые, проходящие через эти точки, пересекают стороны четырёхугольника в четырёх точках, являющихся вершинами параллелограмма. Докажите, что центр этого параллелограмма лежит на прямой, соединяющей середины диагоналей ABCD.

Прислать комментарий     Решение

Задача 57038

Тема:   [ Четырехугольники (прочее) ]
Сложность: 5
Классы: 9

Выпуклый четырехугольник разделен диагоналями на четыре треугольника. Докажите, что прямая, соединяющая точки пересечения медиан двух противоположных треугольников, перпендикулярна прямой, соединяющей точки пересечения высот двух других треугольников.
Прислать комментарий     Решение


Задача 57039

Тема:   [ Четырехугольники (прочее) ]
Сложность: 5
Классы: 9

Диагонали описанной трапеции ABCD с основаниями AD и BC пересекаются в точке O. Радиусы вписанных окружностей треугольников  AOD, AOB, BOC и COD равны  r1, r2, r3 и r4 соответственно. Докажите, что $ {\frac{1}{r_1}}$ + $ {\frac{1}{r_3}}$ = $ {\frac{1}{r_2}}$ + $ {\frac{1}{r_4}}$.
Прислать комментарий     Решение


Задача 57040

Тема:   [ Четырехугольники (прочее) ]
Сложность: 5
Классы: 9

Окружность радиуса r1 касается сторон DA, AB и BC выпуклого четырехугольника ABCD, окружность радиуса r2 — сторон AB, BC и CD; аналогично определяются r3 и r4. Докажите, что  $ {\frac{AB}{r_1}}$ + $ {\frac{CD}{r_3}}$ = $ {\frac{BC}{r_2}}$ + $ {\frac{AD}{r_4}}$.
Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 60]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .