ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

В таблицу n*n записаны n2 чисел, сумма которых неотрицательна. Докажите, что можно переставить столбцы таблицы так, что сумма n чисел, расположенных по диагонали, идущей из левого нижнего угла в правый верхний, будет неотрицательна.

Вниз   Решение


На прямой l взяты точки A1, B1 и C1 и из вершин треугольника ABC на эту прямую опущены перпендикуляры AA2, BB2 и CC2. Докажите, что перпендикуляры, опущенные из точек A1, B1 и C1 на прямые BC, CA и AB, пересекаются в одной точке тогда и только тогда, когда  $ \overline{A_1B_1}$ : $ \overline{B_1C_1}$ = $ \overline{A_2B_2}$ : $ \overline{B_2C_2}$ (отношения отрезков ориентированные).

ВверхВниз   Решение


Внутри выпуклого пятиугольника расположены две точки. Докажите, что можно выбрать четырехугольник с вершинами в вершинах пятиугольника так, что в него попадут обе выбранные точки.

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 295]      



Задача 52646

Темы:   [ Правильный (равносторонний) треугольник ]
[ Вневписанные окружности ]
Сложность: 3
Классы: 8,9

Сторона правильного треугольника равна a. Найдите радиус вневписанной окружности.

Прислать комментарий     Решение


Задача 52355

Темы:   [ Правильный (равносторонний) треугольник ]
[ Теорема Птолемея ]
Сложность: 3+
Классы: 8,9,10

На дуге BC окружности, описанной около равностороннего треугольника ABC, взята произвольная точка P. Докажите, что  AP = BP + CP.

Прислать комментарий     Решение

Задача 52356

Темы:   [ Правильный (равносторонний) треугольник ]
[ Вписанные и описанные окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9

На дуге BC описанной окружности равностороннего треугольника ABC взята точка P. Отрезки AP и BC пересекаются в точке Q. Докажите, что  1/PQ = 1/PB + 1/PC.

Прислать комментарий     Решение

Задача 53114

Темы:   [ Правильный (равносторонний) треугольник ]
[ Теорема косинусов ]
[ Вписанные и описанные окружности ]
Сложность: 3+
Классы: 8,9

Докажите, что сумма квадратов расстояний от точки, лежащей на окружности, до вершин правильного вписанного в эту окружность треугольника есть величина постоянная, не зависящая от положения точки на окружности.

Прислать комментарий     Решение

Задача 53689

Темы:   [ Правильный (равносторонний) треугольник ]
[ Средняя линия треугольника ]
[ Признаки и свойства параллелограмма ]
[ Вспомогательные равные треугольники ]
Сложность: 3+
Классы: 8,9

Два равносторонних треугольника ABC и CDE расположены по одну сторону от прямой AE и имеют единственную общую точку C. Пусть M, N и K – середины отрезков BD, AC и CE соответственно. Докажите, что треугольник MNK равносторонний.

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 295]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .