ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 107]      



Задача 61128

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Треугольник Паскаля и бином Ньютона ]
[ Комплексные числа помогают решить задачу ]
Сложность: 4
Классы: 9,10,11

а) Докажите равенство  

б) Вычислите суммы  

Прислать комментарий     Решение

Задача 61143

Темы:   [ Алгебраические уравнения в C. Извлечение корня ]
[ Треугольник Паскаля и бином Ньютона ]
[ Теорема Виета ]
Сложность: 4
Классы: 9,10,11

Найдите все корни уравнения  (z – 1)n = (z + 1)n.
Чему равна сумма квадратов корней данного уравнения?

Прислать комментарий     Решение

Задача 61448

 [Интерполяционная формула Ньютона]
Темы:   [ Интерполяционный многочлен Ньютона ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 4
Классы: 10,11

а) Докажите, что для любого многочлена f(x) степени n существует единственное представление его в виде

Биномиальный коэффициент      интерпретируется как многочлен от переменной x. В частности, нижний индекс у биномиального коэффициента может быть любым действительным числом.

б) Докажите, что коэффициенты  d0, d1, ..., dn  в этом представлении вычисляются по формуле  dk = Δkf(0)  (0 ≤ k ≤ n).

Прислать комментарий     Решение

Задача 61449

 [Целозначные многочлены]
Темы:   [ Интерполяционный многочлен Ньютона ]
[ Треугольник Паскаля и бином Ньютона ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Целочисленные и целозначные многочлены ]
Сложность: 4
Классы: 10,11

Пусть многочлен f(x) степени n принимает целые значения в точках  x = 0, 1, ..., n.
Докажите, что     где  d0, d1, ..., dn  – некоторые целые числа.

Прислать комментарий     Решение

Задача 61498

Темы:   [ Производящие функции ]
[ Треугольник Паскаля и бином Ньютона ]
[ Классическая комбинаторика (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Предположим, что у нас имеется 1000000 автобусных билетов с номерами от 000000 до 999999. Будем называть билет счастливым, если сумма первых трёх цифр его номера равна сумме трёх последних. Пусть N – количество счастливых билетов. Докажите равенства:
  а)  (1 + x + ... + x9)3(1 + x–1 + ... + x–9)3 = x27 + ... + a1x + N + a1x + ... + x–27;
  б)  (1 + x + ... + x9)6 = 1 + ... + Nx27 + ... + x54.
  в) Найдите число счастливых билетов.

Прислать комментарий     Решение

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 107]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .