ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Найдите объём прямой призмы, основанием которой служит прямоугольный треугольник с острым углом α , если боковое ребро призмы равно l и образует с диагональю большей боковой грани угол β .

Вниз   Решение


Докажите, что для любых целых чисел p и q  (q ≠ 0),  справедливо неравенство  

ВверхВниз   Решение


При каких n можно оклеить в один слой поверхность клетчатого куба n×n×n бумажными прямоугольниками 1×2 так, чтобы каждый прямоугольник граничил по отрезкам сторон ровно с пятью другими?

ВверхВниз   Решение


Экспонентой y = ex называется такая функция, для которой выполнены условия y'(x) = y(x) и y(0) = 1. Какая последовательность {an} будет обладать аналогичными свойствами, если производную заменить на разностный оператор $ \Delta$?

ВверхВниз   Решение


Ребро куба ABCDA1B1C1D1 равно 1. На продолжении ребра AD за точку D выбрана точка M так, что AM = 2 . Точка E – середина ребра A1B1 , точка F – середина ребра DD1 . Какое наибольшее значение может принимать отношение , где точка P лежит на отрезке AE , а точка Q – на отрезке СF ?

ВверхВниз   Решение


Существует ли такое натуральное n, что  

ВверхВниз   Решение


В весеннем туре турнира городов 2000 года старшеклассникам страны N было предложено шесть задач. Каждую задачу решило ровно 1000 школьников, но никакие два школьника не решили вместе все шесть задач. Каково наименьшее возможное число старшеклассников страны N, принявших участие в весеннем туре?

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 85]      



Задача 65762

Темы:   [ Теория графов (прочее) ]
[ Делимость чисел. Общие свойства ]
[ Четность и нечетность ]
[ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 4
Классы: 9,10,11

Автор: Петров Ф.

В стране есть  n > 1  городов, некоторые пары городов соединены двусторонними беспосадочными авиарейсами. При этом между каждыми двумя городами существует единственный авиамаршрут (возможно, с пересадками). Мэр каждого города X подсчитал количество таких нумераций всех городов числами от 1 до n, что на любом авиамаршруте, начинающемся в X, номера городов идут в порядке возрастания. Все мэры, кроме одного, заметили, что их результаты подсчётов делятся на 2016. Докажите, что и у оставшегося мэра результат также делится на 2016.

Прислать комментарий     Решение

Задача 67427

Темы:   [ Теория графов (прочее) ]
[ Принцип крайнего (прочее) ]
[ Раскладки и разбиения ]
Сложность: 4
Классы: 9,10,11

В математическом кружке 45 школьников, некоторые дружат. Как ни разбивай их на тройки, в какой-то тройке все будут друг с другом дружить. Докажите, что всех школьников можно разбить на тройки так, чтобы в каждой тройке хотя бы какие-то двое дружили друг с другом.
Прислать комментарий     Решение


Задача 67456

Тема:   [ Теория графов (прочее) ]
Сложность: 4
Классы: 8,9,10,11

В Камелот съехались $100$ рыцарей Круглого Стола, любые два из которых либо дружат, либо враждуют (дружба и вражда взаимны). Фея Моргана может выбрать любого рыцаря и сделать так, что он поссорится со всеми своими друзьями и при этом подружится со всеми своими врагами. Накладывать это заклинание Моргана может сколько угодно раз. Докажите, что она сможет добиться того, чтобы в итоге образовались такие две группы по $5$ рыцарей, что каждый рыцарь из первой пятёрки будет враждовать с каждым рыцарем из второй.
Прислать комментарий     Решение


Задача 67474

Темы:   [ Теория графов (прочее) ]
[ Деревья ]
Сложность: 4
Классы: 9,10,11

На микросхеме $2025$ различных элементов, некоторые пары из которых соединены проводами. Жора хочет раскидать элементы по $n$ платам так, чтобы никакие два элемента одной платы не были соединены проводами. Жора посчитал, что если плат будет всего две, то у него будет $2$ способа, а если плат $2025$ – то $2025~\cdot~2024^{2024}$ способов. Сколько проводов на микросхеме?

Все элементы и все платы разные, какие-то из плат могут не содержать элементов. Способы считаются разными, если хотя бы один элемент в способах находится на разных платах.
Прислать комментарий     Решение


Задача 98500

Темы:   [ Теория графов (прочее) ]
[ Перебор случаев ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 8,9

В весеннем туре турнира городов 2000 года старшеклассникам страны N было предложено шесть задач. Каждую задачу решило ровно 1000 школьников, но никакие два школьника не решили вместе все шесть задач. Каково наименьшее возможное число старшеклассников страны N, принявших участие в весеннем туре?

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 85]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .