ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 62]      



Задача 61419

Темы:   [ Раскладки и разбиения ]
[ Перебор случаев ]
Сложность: 2
Классы: 8,9,10

Найдите число всех диаграмм Юнга с весом s, если
а)  s = 4;   б)  s = 5;   в)  s = 6;   г)  s = 7.
Определение диаграмм Юнга смотри в справочнике.

Прислать комментарий     Решение

Задача 30702

Темы:   [ Раскладки и разбиения ]
[ Правило произведения ]
[ Сочетания и размещения ]
Сложность: 3-
Классы: 7,8

а) Сколькими способами можно разбить 15 человек на три команды по пять человек в каждой?
б) Сколькими способами можно выбрать из 15 человек две команды по пять человек в каждой?

Прислать комментарий     Решение

Задача 30721

Темы:   [ Раскладки и разбиения ]
[ Сочетания и размещения ]
Сложность: 3-
Классы: 8,9

Переплетчик должен переплести 12 одинаковых книг в красный, зелёный или синий переплеты. Сколькими способами он может это сделать?

Прислать комментарий     Решение

Задача 30724

Темы:   [ Раскладки и разбиения ]
[ Сочетания и размещения ]
Сложность: 3-
Классы: 8,9

В почтовом отделении продаются открытки 10 видов. Сколькими способами можно купить в нём
  а) 12 открыток;
  б) 8 открыток;
  в) 8 различных открыток?

Прислать комментарий     Решение

Задача 30728

Темы:   [ Раскладки и разбиения ]
[ Правило произведения ]
[ Сочетания и размещения ]
Сложность: 3-
Классы: 8,9

Сколькими способами три человека могут разделить между собой шесть одинаковых яблок, один апельсин, одну сливу и один мандарин?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 62]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .